• Title/Summary/Keyword: 3D mold design

Search Result 153, Processing Time 0.026 seconds

Study on Structural Strength Analysis of Automotive Seat Frame (자동차 시트 프레임의 구조 강도 해석에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Soo;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Seat is the part relevant to comfortableness and safety among automotive parts directly. It also should have sufficient stiffness and strength to satisfy these conditions and ensure the safety of passenger. Automotive seat is modelled with 3D and is simulated with structural analyses about three kinds of experiments by before and after gap, side gap, before and after moment strength. As analysis result, deformation angles of $0.038^{\circ}$ and $0.04^{\circ}$ are respectively shown at before and after gap test, side gap test. Through before and after the moment strength test, maximum total deformations of 0.18946mm and 3.2482mm are respectively shown at front and rear loads. By the study result of no excessive deformation and no fracture at automotive seat frame, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN) (인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

A study on strength reinforcement of one-sided reinforced hybrid laminates made of 22MnB5 and carbon fiber reinforced plastics (22MnB5 / 탄소섬유 강화 플라스틱으로 제작된 단면 보강 하이브리드 적층판의 강도 보강에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Young-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • As environmental regulations are strengthened, automobile manufacturers continuously research lightweight structures based on carbon fiber reinforced plastic (CFRP). However, it is difficult to see the effect of strength reinforcement when using a single CFRP material. To improve this, a hybrid laminate in which CFRP is mixed with the existing body structural steel was proposed. In this paper, CFRP patch reinforcement is applied to each compression/tensile action surface of a 22MnB5 metal sheet, and it was evaluated through a 3-point bending experiment. Progressive failure was observed in similar deflection on bending deformation to each one-sided reinforced specimen. After progressive failure, the tensile reinforced specimen was confirmed to separate the damaged CFRP patch and 22MnB5 sheet from the center of the flexure. The compression reinforced specimen didn't separate that CFRP patch and 22MnB5, and the strength reinforcement behavior was confirmed. In the compression reinforced specimen, damaged CFRP patches were observed at the center of flexure during bending deformation. As a result of checking the specimen of the compression reinforcement specimen with an optical microscope, It is confirmed that the damaged CFRP patch and the reinforced CFRP patch overlapped, resulting in a concentrated load. Through the experimental results, the 22MnB5 strength reinforcement characteristics according to the reinforcement position of the CFRP patch were confirmed.

Tough High Thermal-Conductivity Tool Steel for Hot Press Forming (핫 프레스 포밍을 위한 고열전도성 금형에 대한 연구)

  • Kum, Jongwon;Park, Okjo;Hong, Seokmoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.130-134
    • /
    • 2016
  • Due to the need for advanced technologies in the automotive industry, the demand for lighter and safer vehicles has increased. Even though various nonferrous metals, like Aluminum, Magnesium and also Carbon Fiber Reinforced Plastic (CFRP), have been implemented in the automotive industry, a lot of technical research and development is still focused on ferrous metals. In particular, the market volume of High Strength Steel (HSS) parts and Ultra High Strength Steel (UHSS) by hot press forming parts has expanded significantly in all countries' automotive industries. A new tool steel, High Thermal-Conductivity Tool Steel (HTCS), for stamping punches and dies has been developed and introduced by Rovalma Company (Spain), and it is able to support better productivity and quality during hot press forming. The HTCS punches and dies could help to reduce cycle time due to their high thermal conductivity, one of the major factors in hot press forming operation. In this study, test dies were manufactured in order to verify the high thermal conductivity of HTCS material compared to SKD6. In addition, thermal deformation was inspected after the heating and cooling process of hot press forming. After heating and cooling, the test dies were measured by a 3D scanner and compared with the original geometry. The results showed that the thermal deformation and distortion were very small even though the cooling time was reduced by 2 seconds.

VR Visualization of Casting Flow Simulation (주물 유동해석의 VR 가시화)

  • Park, Ji-Young;Suh, Ji-Hyun;Kim, Sung-Hee;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.813-816
    • /
    • 2008
  • In this research we present a method to reconstruct the casting flow simulation result as a 3D model and visualize it on a VR display. First, numerical analysis of heat flow is performed using an existing commercial CAE simulation software. In this process the shape of the original design model is approximated to a regular rectangular grid. The filling ratio and temperature of each voxel are recorded iteratively by predefined number of steps starting from pouring the melted metal into a mold until it is entirely filled. Next we reconstruct the casting by voxels using the simulation result as an input. The color of voxel is determined by mapping the colors to temperature and filling ratio at each step as the flow proceeds. The reconstructed model is visualized on the Projection Table which is one of horizontal-type VR display. It provides active stereoscopic images.

  • PDF

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

  • Wang, B.;Luo, Y.;Myung, K.H.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.832-840
    • /
    • 2014
  • This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures ($5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$) and four durations (0, 1, 2, and 3 d) were arranged in a $4{\times}4$ factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as $25^{\circ}C$ and $35^{\circ}C$. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds $35^{\circ}C$, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above $35^{\circ}C$ during summer.

Electron Discharge Machining (EDM) and Hole EDM of Cold Heat-treated Tool Steel Molds (STD11) by using Cu Electrodes (냉간 금형용 공구강의 Cu 전극을 이용한 방전 홀에 관한 연구)

  • Park, In-Soo;Lee, Eun-Ju;Kim, Hwa-Jeong;Wang, Deok-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.76-82
    • /
    • 2018
  • 3D formed Electrical Discharge Machining (EDM) and hole EDM were conducted for die and mold manufacturing with electrodes which were made by mechanical machining and wire EDM. It is difficult to machine the hardened material after heat treatment and quenching with traditional machining. The only method of machining hardened material is die-sinking EDM. In this research, hole EDM was conducted for heat-treated cold-worked tool steel (SKD11) for use as a die material. The EDM surfaces were analyzed by pulse-on time and peak current of EDM current, according to the machining conditions of EDM. The EDM surface profiles were affected by the peak current. The contribution of each factor is peak current (91.63%) and pulse-on time (0.93%). The best surface roughness was obtained with a $130{\mu}s$ pulse-on time and a 14.2 A peak current. With uniform EDM processing, the surface deteriorated with increasing pulse-on time and peak current. The thickness of the solidified layer induced by EDM was increased as the peak current, crater shapes, and erupted shapes of EDM surfaces were increased. Therefore, microcracking gaps induced by surface tension were increased.

Industrial analysis according to lithography characteristics of digital micromirror device and polygon scanner (Digital Micromirror Device와 Polygon scanner의 Lithography 특성에 따른 산업적 분석)

  • Kim, Ji-Hun;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.65-71
    • /
    • 2021
  • In the early days of laser invention, it was simply used as a measuring tool, but as lasers became more common, they became an indispensable processing tool in the industry. Short-wavelength lasers are used to make patterns on wafers used in semiconductors depending on the wavelength, such as CO2 laser, YAG laser, green laser, and UV laser. At first, the hole of the PCB board mainly used for electronic parts was not thin and the hole size was large, so a mechanical drill was used. However, in order to realize product miniaturization and high integration, small hole processing lasers have become essential, and pattern exposure for small hole sizes has become essential. This paper intends to analyze the characteristics through patterns by exposing the PCB substrate through DMD and polygon scanner, which are different optical systems. Since the optical systems are different, the size of the patterns was made the same, and exposure was performed under the optimal conditions for each system. Pattern characteristics were analyzed through a 3D profiler. As a result of the analysis, there was no significant difference in line width between the two systems. However, it was confirmed that dmd had better pattern precision and polygon scanner had better productivity.