• Title/Summary/Keyword: 3D modeling automation

Search Result 75, Processing Time 0.021 seconds

Simultaneous Tracking of Multiple Construction Workers Using Stereo-Vision (다수의 건설인력 위치 추적을 위한 스테레오 비전의 활용)

  • Lee, Yong-Ju;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Continuous research efforts have been made on acquiring location data on construction sites. As a result, GPS and RFID are increasingly employed on the site to track the location of equipment and materials. However, these systems are based on radio frequency technologies which require attaching tags on every target entity. Implementing the systems incurs time and costs for attaching/detaching/managing the tags or sensors. For this reason, efforts are currently being made to track construction entities using only cameras. Vision-based 3D tracking has been presented in a previous research work in which the location of construction manpower, vehicle, and materials were successfully tracked. However, the proposed system is still in its infancy and yet to be implemented on practical applications for two reasons. First, it does not involve entity matching across two views, and thus cannot be used for tracking multiple entities, simultaneously. Second, the use of a checker board in the camera calibration process entails a focus-related problem when the baseline is long and the target entities are located far from the cameras. This paper proposes a vision-based method to track multiple workers simultaneously. An entity matching procedure is added to acquire the matching pairs of the same entities across two views which is necessary for tracking multiple entities. Also, the proposed method simplified the calibration process by avoiding the use of a checkerboard, making it more adequate to the realistic deployment on construction sites.

Design and Implementation of Cyber Attack Simulator based on Attack Techniques Modeling

  • Kang, Yong Goo;Yoo, Jeong Do;Park, Eunji;Kim, Dong Hwa;Kim, Huy Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.65-72
    • /
    • 2020
  • With the development of information technology and the growth of the scale of system and network, cyber threats and crimes continue to increase. To cope with these threats, cybersecurity training based on actual attacks and defenses is required. However, cybersecurity training requires expert analysis and attack performance, which is inefficient in terms of cost and time. In this paper, we propose a cyber attack simulator that automatically executes attack techniques. This simulator generates attack scenarios by combining attack techniques modeled to be implemented and executes the attack by sequentially executing the derived scenarios. In order to verify the effectiveness of the proposed attack simulator, we experimented by setting an example attack goal and scenarios in a real environment. The attack simulator successfully performed five attack techniques to gain administrator privileges.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification (IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화)

  • Hong, Simheee;Yeo, Changjae;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.63-73
    • /
    • 2017
  • In contemporary society, it is increasingly common to spend more time indoors. As such, there is a continually growing desire to build comfortable and safe indoor environments. Along with this trend, however, there are some serious indoor-environment challenges, such as the quality of indoor air and Sick House Syndrome. To address these concerns the government implements various systems to supervise and manage indoor environments. For example, green building certification is now compulsory for public buildings. There are three categories of green building certification related to indoor air in Korea: Health-Friendly Housing Construction Standards, Green Standard for Energy & Environmental Design(G-SEED), and Indoor Air Certification. The first two types of certification, Health-Friendly Housing Construction Standards and G-SEED, evaluate data in a drawing plan. In comparison, the Indoor Air Certification evaluates measured data. The certification using data from a drawing requires a considerable amount of time compared to other work. A 2D tool needs to be employed to measure the area manually. Thus, this study proposes an automatic assessment process using a Building Information Modeling(BIM) model based on 3D data. This process, using open source Industry Foundation Classes(IFC), exports data for the certification system, and extracts the data to create an Excel sheet for the certification. This is expected to improve the work process and reduce the workload associated with evaluating indoor air conditions.

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.