• Title/Summary/Keyword: 3D meshes

Search Result 192, Processing Time 0.025 seconds

3D Animation Watermarking Using Position Interpolator (위치보간기를 이용한 3D 애니메이션 워터마킹)

  • Bae, Sung-Ho;Lee, Suk-Hwan;Kim, Jung-Hyun;Kwon, Ki-Ryong;Lee, Eung-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.287-296
    • /
    • 2007
  • 3D keyframe animation is used widely in 3D graphics for real-time animation. This is a method that registers the animated key values in the important several frames among the entire frames and generates the rest frame by interpolator using the registered key values. This paper proposed the watermarking for 3D keyframe animation using PositionInterpolator. The proposed algorithm selects randomly the embedding meshes, which are transform nodes among the entire hierarchical structure. Then the watermark is embedded into keyValues of PositionInterpolator in selected transform node. Experimental results verified that the proposed algorithm has the robustness against geometrical attacks and timeline attacks.

A Digital Watermarking of 3D Geometric Model STL for Rapid Prototyping System (쾌속조형 시스템을 위한 3차원 기하학적 형상인 STL의 디지털 워터마킹)

  • 김기석;천인국
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.552-561
    • /
    • 2002
  • In this paper, a new watermarking algorithm for STL files which contains 3D geometric information as triangular facets is proposed. STL files are widely used in rapid prototyping industry as a standard interchange format. The proposed algorithm inserts multi-bit watermark information into the surface normal vector and vertex description area of STL file without distorting the original 3D geometric information. According to the watermark bits, the position of normal vector and the direction of vertex sequence are modulated. The proposed algorithm is robust to the attack of changing the order of the triangular meshes. In addition, the invisibility requirement is also satisfied. Experiment results show that the proposed algorithm can encode and decode watermark bits into the various STL files without any distortion of 3D shape.

  • PDF

An effective filtering for noise smoothing using the area information of 3D mesh (3차원 메쉬의 면적 정보를 이용한 효과적인 잡음 제거)

  • Hyeon, Dae-Hwan;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.55-62
    • /
    • 2007
  • This paper proposes method to get exquisite third dimension data removing included noise by error that occur in third dimension reconstruction through camera auto-calibration. Though reconstructing third dimension data by previous noise removing method, mesh that area is wide is happened problem by noise. Because mesh's area is important, the proposed algorithm need preprocessing that remove unnecessary triangle meshes of acquired third dimension data. The research analyzes the characteristics of noise using the area information of 3-dimensional meshes, separates a peek noise and a Gauss noise by its characteristics and removes the noise effectively. We give a quantitative evaluation of the proposed preprocessing filter and compare with the mesh smoothing procedures. We demonstrate that our effective preprocessing filter outperform the mesh smoothing procedures in terms of accuracy and resistance to over-smoothing.

Computational aero-acoustics using a hybrid approach combining standard CFD tools with ACTRAN/LA; theory, process and applications

  • Migeot, Jean-Louis
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.545-560
    • /
    • 2008
  • O Source import ㅁDirect import form Nastran, ANSYS ㅁDirect import of all the RPM from the files containing the structural results O Solver ㅁDirect computation of all RPM (multiple load case): one matrix resolution with multiple RHS ㅁEfficient solvers (MUMPS, SPARSE, Iterative) ㅁFrequency parallelisms available for very large problems O In practice ㅁSmall problems run on a desktop ㅁLarge problems can exceed 3kHz on a car engine O Easy to mesh ㅁ3D model created in a few minutes thanks to the unequal meshes. O And all Actran standard features

  • PDF

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.

Transfer Learning based Parameterized 3D Mesh Deformation with 2D Stylized Cartoon Character

  • Sanghyun Byun;Bumsoo Kim;Wonseop Shin;Yonghoon Jung;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3121-3144
    • /
    • 2023
  • As interest in the metaverse has grown, there has been a demand for avatars that can represent individual users. Consequently, research has been conducted to reduce the time and cost required for the current 3D human modeling process. However, the recent automatic generation of 3D humans has been focused on creating avatars with a realistic human form. Furthermore, the existing methods have limitations in generating avatars with imbalanced or unrealistic body shapes, and their utilization is limited due to the absence of datasets. Therefore, this paper proposes a new framework for automatically transforming and creating stylized 3D avatars. Our research presents a definitional approach and methodology for creating non-realistic character avatars, in contrast to previous studies that focused on creating realistic humans. We define a new shape representation parameter and use a deep learning-based method to extract character body information and perform automatic template mesh transformation, thereby obtaining non-realistic or unbalanced human meshes. We present the resulting outputs visually, conducting user evaluations to demonstrate the effectiveness of our proposed method. Our approach provides an automatic mesh transformation method tailored to the growing demand for avatars of various body types and extends the existing method to the 3D cartoon stylized avatar domain.

A New 3D Mesh Regeneration Method in the Shape Optimal Design of (전자소자의 형상최적화를 위한 3차원 요소의 재생성법)

  • Yao, Yingying;Koh, Chang-Seop;Xie, Dexin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.841-843
    • /
    • 2002
  • A novel and simple method, which can be used to automatically regenerate 3D finite element meshes, is presented in the paper. This technique based on the structural deformation analysis. It is problem independent and can be used to renew the mesh of any kind of 3D shape design system whether the geometric surface is parameterized or not. The mesh deformation degree can be adjusted by choosing suitable subregion and giving proper parameters. It is sufficient to obtain a smooth contour with proper mesh quality. Application to the optimum design of shielding plate shows the effectiveness of the proposed technique.

  • PDF

Numerical Simulations of Cavitation Flow in Volumetric Gear Pump (회전 용적형 기어펌프의 캐비테이션 유동 해석)

  • Lee, Jung-Ho;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

A Connectivity Encoding of 3D Meshes for Mobile Systems (모바일 시스템을 위한 연결 데이터 압축 알고리즘)

  • Kim, Dae-Young;Lee, Sung-Yeol;Lee, Hae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • Mobile systems have relatively limited resources such as low memory, slow CPU, or low power comparing to desktop systems. In this paper, we present a new 3D mesh connectivity coding algorithm especially optimized for mobile systems(i.e., mobile phones). By using adaptive octree data structure for vertex positions, a new distance-based connectivity coding is proposed. Our algorithm uses fixed point arithmetic and minimizes dynamic memory allocation, appropriate for mobile systems. We also demonstrate test data to show the utility of our mobile 3D mesh codec.

  • PDF