• Title/Summary/Keyword: 3D imaging system

Search Result 498, Processing Time 0.027 seconds

Research of 3D Information processing for Robot Surgery (로봇 수술을 위한 3차원 구조계산의 필요성 조사)

  • Jung, Jae-Eun;Choi, Seok-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Geometry calculation Using Abdominal internal organ image from traditional laparoscopy or robotic surgery system we can make depth informations through measured 3D structure informations is very helpful to doctors, depth information is mare useful then others that use traditional laparoscopy or robotic surgery system to many doctors. however, traditional method are incomplete. less experienced doctors make much mare prohability of mistake. Hence, 3D information of organ is very helpful to the less experienced doctors. it will be greate role of reducing medical accidents and surgical time. We can get 3D informations using geometrical calculation method in robotic surgical system. also suggested method is needed in traditional surgical method without the need to create a new system, finally, We can get 3D information from traditional system without any new system, it take advantage in cost and create high efficiency. mare information will provided to many doctors.

  • PDF

Binocular Holographic Three-Dimensional Imaging System Using Optical Scanning Holography (광 스캐닝 홀로그래피를 이용한 양안식 3차원 홀로그래픽 영상 시스템)

  • Kim, You Seok;Kim, Taegeun
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.5
    • /
    • pp.249-254
    • /
    • 2015
  • In this paper we propose a binocular holographic three-dimensional (3D) imaging system using optical scanning holography. To realize a binocular 3D holographic imaging system, we could acquire the complex holograms of a real object after designing a holographic display system based on interpupillary distance and pupil size, and these holograms could be optically reconstructed following numerical signal processing with an amplitude spatial light modulator. The proposed binocular 3D holographic imaging system using optical scanning holography was verified experimentally.

New Image Mapping Algorithm for 3D Integral Imaging Display System used in Virtual Reality

  • Suk, Myung-Hoon;Min, Sung-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.41-45
    • /
    • 2005
  • A new algorithm of the image mapping which is a technique of the elemental image generation is proposed. The proposed method is based on the characteristics of the lens array such as the number, the size and the focal length of the elemental lens. The 3D image generated by 3D graphic API such as OpenGL can be directly adopted without the complex adaptation. Since the image mapping using the proposed method can enhance the speed of the elemental image generation, the computer- generated integral imaging system can be applied to virtual reality system.

  • PDF

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

3-D seismic data processing system for underground investigation (지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발)

  • Sheen, Dong-Hoon;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

An improved 2D/3D convertible integral imaging with two parallel display devices

  • Choi, Hee-Jin;Park, Jae-Hyeung;Kim, Joo-Hwan;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.46-49
    • /
    • 2005
  • In this paper, a novel 2D/3D convertible display system based on integral imaging is proposed. Combining two liquid crystal display panels with integral imaging, it is possible to convert the display between two-dimensional mode and three-dimensional mode without mechanical movement. The proposed method is proven by preliminary experiments.

  • PDF

Design of an Asymmetric-custom-surface Imaging Optical System for Two-dimensional Temperature-field Measurement

  • Guanghai Liu;Ming Gao;Jixiang Zhao;Yang Chen
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.484-492
    • /
    • 2024
  • In response to the difficulty of synchronously obtaining multiwavelength images for fast two-dimensional (2D) temperature measurement, a multispectral framing imaging optical system is designed, based on the segmented-aperture imaging method and asymmetric surface shape. The system adopts a common-aperture four-channel array structure to synchronously collect multiwavelength temperature-field images. To solve the problem of asymmetric aberration caused by being off-axis, a model of the relationship between incident and outgoing rays is established to calculate the asymmetric custom surface. The designed focal length of the optical system is 80 mm, the F-number is 1:3.8, and the operating wavelength range is 0.48-0.65 ㎛. The system is divided into four channels, corresponding to wavelengths of 0.48, 0.55, 0.58, and 0.65 ㎛ respectively. The modulation transfer function value of a single channel lens is higher than 0.6 in the full field of view at 35 lp/mm. The experimental results show that the asymmetric-custom-surface imaging system can capture clear multiwavelength images of a temperature field. The framing imaging system can capture clear images of multiwavelength temperature fields, with high consistency in images of different wavelengths. The designed optical system can provide reliable multiwavelength image data for 2D temperature-field measurement.

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.