• Title/Summary/Keyword: 3D imaging system

Search Result 498, Processing Time 0.026 seconds

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Video Rate Image Signal Processing for Optical Coherence Tomography (광학 영상기를 위한 실시간 영상 신호 처리에 관한 연구)

  • 나지훈;이병하;이창수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.239-248
    • /
    • 2004
  • Optical coherence tomography(OCT) is high resolution imaging system which can see the cross section of microscopic organs in the living tissue. In this paper, we analyze the relation between the light source and the resolution of modulated signal in Michelson interferometer. We construct 1-D OCT signal processing hardware such as amplifiers, filters, and demodulate electronic signals from the photo detector. In order to get 2-D OCT image, the synchronization among optical delay line, sample stage and A/D converter is dealt with. In experiments, we verify analog and digital signal processing blocks which apply to the stacks of glasses. Finally we aquire high resolution 2-D OCT image with respect to the onion tissue. We expect that this result can be applied to the medical instrument through performance improvement.

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D T2* weighted Technique and Fat Suppressed 3D SPGR Technique when Examining MRI for Knee Joint Cartilage Assesment (슬관절 연골 평가를 위한 자기공명영상 검사 시 지방 신호 억제 3D T2* Weighted 기법과 지방 신호 억제 3D SPGR 기법의 비교 및 유용성 평가)

  • Kang, Sung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.219-225
    • /
    • 2016
  • In this study, for assessment of degenerative knee joint cartilage disease we acquired images by fat suppressed 3D spoiled gradient recalled (SPGR) and fat suppressed 3D $T2^*$ weighted imaging techniques. To do a quantitative evaluation, the knee joint cartilage was divided into medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage (LFC), lateral femoral cartilage (LFC) and patella cartilage (Pat) to measure their respective signal intensity values, signal-to-noise ratio, and contrast-to-noise ratio. As for the measured values, statistical significance between two techniques was verified by using Mann-Whitney U-Test. To do a qualitative evaluation, two radiologists have examined images by techniques after which image artifact, cartilage surface, tissue contrast, and depiction of lesion distinguishing were evaluated based on 4-point scaling (1: bad, 2: appropriate, 3: good, 4: excellent), and based on the result, statistical significance was verified by using Kappa-value Test. 3.0T MR system and HD T/R 8ch knee array coil were used to acquire images. As a result of a quantitative analysis, based on SNR values measured by using two imaging techniques, MFC, LFC, LTC, and Pat showed statistical significance (p < 0.05), but MTC did not (p > 0.05). As a result of verifying statistical significance for measured CNR value, MFC, LFC, and Pat showed statistical significance (p < 0.05), while MTC and LTC did not show statistical significance (p > 0.05). As a result of a qualitative analysis, by comparing mean values for evaluated image items, 3D $T2^*$ weighted Image has indicated a slightly higher value. As for conformance verification between the two observers by using Kappa-value test, all evaluated items have indicated statistically significant results (p < 0.05). 3D $T2^*$ weighted technique holds a clinical value equal to or superior to 3D SPGR technique with respect to evaluating images, such as distinguishing knee joint cartilages, comparing nearby tissues contrast, and distinguishing lesions.

The imaging of 128 channels cardiac activation signal (128채널 심장전기도 신호의 영상화)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.133-137
    • /
    • 2010
  • In this study, The imaging of 128 channels cardiac activation signal is implemented. It is performed within one minutes and very useful in open-heart operation with analysis in a short time. Especially the keeping of data and the moving of system is facility because it was implemented with being based on PC. The cardiologist can call data and analysis them anytime after a surgery.

Effect of the Hole on the Tensile Fatigue Properties of CFRP Laminates

  • Lee, Yeon-Soo;Ben, Goichi;Lee, Se-Hwan
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.43-59
    • /
    • 2009
  • The current study assessed the effect of a bolt hole on tensile fatigue properties of CFRP laminates. Two specimens, i.e. $[(0/90)_3]S$, $[(0/45/90/-45)_2]_S$, were analyzed using a finite element method and were experimentally tested for cases, both with and without a hole, whose diameter corresponded to 0.12 times the specimen width. Delamination positions predicted by a 3-dimensional static finite element analysis were matched well to those observed by an ultrasonic imaging system in the middle of fatigue test. A hole whose diameter corresponds to 0.12 times the specimen width caused the fatigue strength to decrease by 9% and 11% under 5 Hz loading frequency, and by 22% and 25% under 10 Hz loading frequency for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively. Because the decrease in sectional area due to the hole was normalized in calculation of the tensile strength, a stress concentration around the hole is believed to induce the strength degradation of fatigue specimens. From the finite element analyses, the stress concentration factor around a hole was expected as 8.8 and 9.5 for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Construction and Application of 3D Image Model for GIS Spatial Analysis (GIS 공간분석을 위한 3D 영상모형의 구축과 활용)

  • Jung, Sung-Heuk;Lee, Kae-Dong;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.561-569
    • /
    • 2008
  • Currently, satellite image, aerial image and airborne laser scanning data are mostly used to build 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. When making 3D image models, the model is first built and textures from terrestrial photos are applied to add realistic features to the model. This study analyzed techniques to use photogrammetry and laser scanning data to create a 3D image models with topography, building and statue that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. 3D image models with spatial accuracy and photographic texture were built to be served via 3D image map services systems on the internet. The 3D image models can be used for various purposes, such as daylight and view right analysis, landscape analysis, facility management system.

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Use of Imaging and Biopsy in Prostate Cancer Diagnosis: A Survey From the Asian Prostate Imaging Working Group

  • Li-Jen Wang;Masahiro Jinzaki;Cher Heng Tan;Young Taik Oh;Hiroshi Shinmoto;Chau Hung Lee;Nayana U. Patel;Silvia D. Chang;Antonio C. Westphalen;Chan Kyo Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1102-1113
    • /
    • 2023
  • Objective: To elucidate the use of radiological studies, including nuclear medicine, and biopsy for the diagnosis and staging of prostate cancer (PCA) in clinical practice and understand the current status of PCA in Asian countries via an international survey. Materials and Methods: The Asian Prostate Imaging Working Group designed a survey questionnaire with four domains focused on prostate magnetic resonance imaging (MRI), other prostate imaging, prostate biopsy, and PCA backgrounds. The questionnaire was sent to 111 members of professional affiliations in Korea, Japan, Singapore, and Taiwan who were representatives of their working hospitals, and their responses were analyzed. Results: This survey had a response rate of 97.3% (108/111). The rates of using 3T scanners, antispasmodic agents, laxative drugs, and prostate imaging-reporting and data system reporting for prostate MRI were 21.6%-78.9%, 22.2%-84.2%, 2.3%-26.3%, and 59.5%-100%, respectively. Respondents reported using the highest b-values of 800-2000 sec/mm2 and fields of view of 9-30 cm. The prostate MRI examinations per month ranged from 1 to 600, and they were most commonly indicated for biopsy-naïve patients suspected of PCA in Japan and Singapore and staging of proven PCA in Korea and Taiwan. The most commonly used radiotracers for prostate positron emission tomography are prostate-specific membrane antigen in Singapore and fluorodeoxyglucose in three other countries. The most common timing for prostate MRI was before biopsy (29.9%). Prostate-targeted biopsies were performed in 63.8% of hospitals, usually by MRI-ultrasound fusion approach. The most common presentation was localized PCA in all four countries, and it was usually treated with radical prostatectomy. Conclusion: This survey showed the diverse technical details and the availability of imaging and biopsy in the evaluation of PCA. This suggests the need for an educational program for Asian radiologists to promote standardized evidence-based imaging approaches for the diagnosis and staging of PCA.

Simple Camera-based Evaluation System for Lower Limb Alignment during Pedalling (자전거 페달링 시 하지 정렬 평가를 위한 영상 시스템 개발)

  • Oh, Ho-Sang;Choi, Jin-Seung;Kang, Dong-Won;Seo, Jeong-Woo;Bae, Jae-Hyuk;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • Simple camera-based system for evaluation of lower limb alignment as a part of an automated cycling fitting system was developed and verified in this study. Developed imaging system can evaluate lower limb alignment quantitatively during pedaling using a general camcorder and single marker attached on the knee. Threshold-based marker detection algorithm was proposed in this study. Experiment was carried out to compare the trajectory data from marker detection algorithm of the developed imaging system with the trajectory data from 3-D motion capture system. Results showed that average error between trajectories was 2.33 mm (0.92 %) in the vertical direction and 0.62 mm (1.86 %) in the medio-lateral direction. There existed significant correlation between two measured values (r=0.9996 in the vertical direction and r=0.9975 in the medio-lateral direction). It can be concluded that developed imaging system be applied to evaluate lower limb alignment which is an important factor for dynamic bicycle fitting.