• Title/Summary/Keyword: 3D imaging system

Search Result 498, Processing Time 0.027 seconds

Development of Stereotactic Surgery system with CT, MR Imaging, and Angiography (컴퓨터 단층촬영, 자기공명영상, 뇌혈관촬영을 이용한 정위적 수술시스템의 개발)

  • Kim, S.H.;Suh, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.117-118
    • /
    • 1998
  • The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using CT/MRI/angiography and multi-purpose QA phantom. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed, and targets on each CT image were superimposed each other on MR/angiography images without distortion corretion. This system was implented in Visual C++ as a PC-based application program.

  • PDF

Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain (쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현)

  • Lee, Junseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.

Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging (고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발)

  • Lee, Jun Ho;Nam, Hyo Seok;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.

Development of Automatic System for 3D Visualization of Biological Objects

  • Choi, Tae Hyun;Hwnag, Heon;Kim, Chul Su
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get interior and exterior informations, constructing 3D image form a series of slices sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D model generator was developed. The system was composed of three modules. The first module was the object handling and image acquisition module, which fed and sliced the object sequentially and maintains the paraffine cool to be in solid state and captures the sectional image consecutively. The second one was the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last was the image processing and visualization module, which processed a series of acquired sectional images and generated 3D volumetric model. Handling module was composed of the gripper, which grasped and fed the object and the cutting device, which cuts the object by moving cutting edge forward and backward. sliced sectional images were acquired and saved in a form of bitmap file. 2D sectional image files were segmented from the background paraffine and utilized to generate the 3D model. Once 3-D model was constructed on the computer, user could manipulated it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

Construction of 3D Earth Optical Model for Earth Remote Sensing (Amon-Ra) Instrument at L1 Halo Orbit

  • Ryu, Dong-Ok;Seong, Se-Hyun;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • We present construction of 3D Earth optical Model for in-orbit performance prediction of L1 halo orbiting earth remote sensing instrument; the Albedo Monitor and Radiometer (Amon-Ra) using Integrated Ray Tracing (IRT) computational technique. The 3 components are defined in IRT; 1) Sun model, 2) Earth system model (Atmosphere, Land and Ocean), 3)Amon-Ra Instrument model. In this report, constructed sun model has Lambertian scattering hemisphere structure. The atmosphere is composed of 16 distributed structures and each optical model includes scatter model with both reflecting and transmitting direction respond to 5 deg. intervals of azimuth and zenith angles. Land structure model uses coastline and 5 kinds of vegetation distribution data structure, and its non-Lambertian scattering is defined with the semi-empirical "parametric kernel method" used for MODIS (NASA) missions. The ocean model includes sea ice cap with the sea ice area data from NOAA, and sea water optical model which is considering non-Lambertian sun-glint scattering. The IRT computation demonstrate that the designed Amon-Ra optical system satisfies the imaging and radiometric performance requirement. The technical details of the 3D Earth Model, IRT model construction and its computation results are presented together with future-works.

  • PDF

An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery (전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구)

  • Yoo, Beong-Gyu;Chung, Tae-Sub
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

Development and Evaluation of System for 3D Visualization Model of Biological Objects (3차원 생물체 가시화 모델 구축장치 개발 및 성능평가)

  • Hwang, H.;Choi, T. H.;Kim, C. H.;Lee, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.