• Title/Summary/Keyword: 3D image reconstruction

Search Result 590, Processing Time 0.025 seconds

Markerless Motion Capture Algorithm for Lizard Biomimetics (소형 도마뱀 운동 분석을 위한 마커리스 모션 캡쳐 알고리즘)

  • Kim, Chang Hoi;Kim, Tae Won;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.136-143
    • /
    • 2013
  • In this paper, a algorithm to find joints of a small animal like a lizard from the multiple-view silhouette images is presented. The proposed algorithm is able to calculate the 3D coordinates so that the locomotion of the lizard is markerlessly reconstructed. The silhouette images of the lizard was obtained by a adaptive threshold algorithm. The skeleton image of the silhouette image was obtained by Zhang-Suen method. The back-bone line, head and tail point were detected with the A* search algorithm and the elimination of the ortho-diagonal connection algorithm. Shoulder joints and hip joints of a lizard were found by $3{\times}3$ masking of the thicked back-bone line. Foot points were obtained by morphology calculation. Finally elbow and knee joint were calculated by the ortho distance from the lines of foot points and shoulder/hip joint. The performance of the suggested algorithm was evaluated through the experiment of detecting joints of a small lizard.

Digital Holographic microscopy based on phase shifting technique (위상천이가법에 의한 디지털 홀로그래피 마이크로스코피에 관한 연구)

  • Park, Kwang-Hee;Chai, Pyung-Seak;Eun, Jae-Jeang
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.181-187
    • /
    • 2011
  • In this thesis, digital in-line holographic microscopy has been implemented with enhanced phase shifting technique. It was demonstrated that the zero-order diffraction noise and the twin image can be eliminated by phase-shifting interferometry very effectively. Also the experimental and numerical reconstruction has been incorporated into one set-up operating in real time. Experimental results and the analysis of the phase map indicate that the proposed system can be very useful for the measurement of microscopic objects and 3-D microscopy.

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.

Field Applicability of Augmented Reality Technology by Marker Mapping for Construction Project (Focused on Measurement Process of Rebar Work) (마커방식 증강현실기법의 건설현장 적용성 연구 (철근배근 검측업무 사례적용))

  • Kim, SunYoung;Kim, HyeonSeung;Moon, HyounSeok;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2509-2518
    • /
    • 2013
  • Augmented reality (AR) technology visualizes a real type object that cannot simulate in virtual reality technology by overlapping a virtual object and real object in a computer system. This study suggests a methodology and prototype system for applying AR system to rebar distribution work in a civil engineering project. Rebar work in civil engineering project is a representative activity that is progressed by empirical approach of skilled labor rather than formalized manual. AR technology improves the constructability of rebar work because AR tool can identify missing rebars and different rebars comparing with the drawings. AR system developed in this study can enhance the understanding of rebar work using 3D modeling with real image of construction site and save construction cost by reducing reconstruction work.

THE CLINICAL STUDY FOR AVAILABLE VOLUME OF ANTERIOR PART OF ASCENDING RAMUS AS A DONOR SITE IN ORAL AND MAXILLOFACIAL REGION (공여부로서의 하악 상행지 전방부의 가용 용적에 관한 임상적 연구)

  • Jung, Sung-Uk;Lee, Eui-Seok;Yun, Jung-Ju;Lee, Sung-Jae;Jang, Hyun-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.130-136
    • /
    • 2005
  • Bone grafts are widely used in the reconstruction of osseous defects in the oral and maxillofacial region. Autogenous bone grafts are considered the gold standard in grafting of the oral and maxillofacial region, because of its osteoconductive and osteoinductive properties. Mandibular symphysis & ascending ramus bone graft have been used more frequently because of easy surgical access, reduced operative time, and following minimal morbidity. However, even though the frequent use of the anterior part of ascending ramus and the different regions of mandible, rare of the reports provide information about the quantity of bone available in this donor site. So this study was taken to evaluate & quantify the amount of bone graft material in the anterior ascending ramus regions. This study was made on 36 samples of CT image. In 3D volume image, imaginary osteotomy & segmentation were done and the dimensions and volume of the bone grafts were measured and evaluated. the average volume of the graft materials obtained from the ascending ramus was $3656.83{\pm}108.19mm^3$, and the average dimensions of graft materials were $(33.68{\pm}0.48){\times}(34.92{\pm}0.51){\times}(15.96{\pm}0.27){\times}(9.05{\pm}0.27)mm$.

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Development of New Optimized Sampling method for 3D Shape Recovery in the Presence of Noise

  • Lee, Hyeong-Geun;Jang, Hoon-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Noise affects the accuracy of three-dimensional shape recovery. Its occurrence is unpredictable and depends on several mechanical, environmental, and other factors. When two-dimensional image sequences are obtained for shape from focus (SFF), mechanical vibration occurs in the translational stage, causing an error in the three-dimensional shape recovery. To address this issue, mechanical vibration is modeled using Newton's second law and the principle of the rack and pinion gear. Then, an optimal sampling step size considering the mechanical vibration is suggested through theoretical demonstration. Experiments conducted with real objects verify the effectiveness of the proposed sampling step size. In this paper, in a realistic environment with noise, the potential of obtaining more accurate three-dimensional reconstruction results of the objects is explored by acquiring the optimal sampling step size, which improves the sampling step size relative to those reported in a previous study performed under similar conditions.

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

Robust Features and Accurate Inliers Detection Framework: Application to Stereo Ego-motion Estimation

  • MIN, Haigen;ZHAO, Xiangmo;XU, Zhigang;ZHANG, Licheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.302-320
    • /
    • 2017
  • In this paper, an innovative robust feature detection and matching strategy for visual odometry based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant feature detection and description algorithm AKAZE is adopted to extract the interest points. A robust feature matching strategy is introduced to match AKAZE descriptors. In order to remove the outliers which are mismatched features or on dynamic objects, an improved random sample consensus outlier rejection scheme is presented. Thus the proposed method can be applied to dynamic environment. Then, geometric constraints are incorporated into the motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an iterated sigma point Kalman Filter is adopted to refine the motion results. The presented ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art approaches with data captured on campus in a considerably cluttered environment, where the superiorities are proved.

Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction (3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법)

  • Paeng, Kyunghyun;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Sujung;Yoo, Jisung;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.228-237
    • /
    • 2013
  • In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.