• Title/Summary/Keyword: 3D image reconstruction

Search Result 591, Processing Time 0.034 seconds

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

Recording natural head position using an accelerometer and reconstruction from computed tomographic images

  • Park, Il Kyung;Lee, Keun Young;Jeong, Yeong Kon;Kim, Rae Hyong;Kwon, Dae Gun;Yeon, Sunghee;Kwon, Kyung-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.4
    • /
    • pp.256-261
    • /
    • 2017
  • Objectives: The concept of natural head position (NHP) was first introduced by Broca in 1862, and was described as a person's stable physiologic position "when a man is standing and his visual axis is horizontal." NHP has been used routinely for clinical examination; however, a patient's head position is random during cone-beam computed tomography (CBCT) acquisition. To solve this problem, we developed an accelerometer to record patients' NHP and reproduce them for CBCT images. In this study, we also tested the accuracy and reproducibility of our accelerometer. Materials and Methods: A total of 15 subjects participated in this study. We invented an accelerometer that measured acceleration on three axes and that could record roll and pitch calculations. Recorded roll and pitch data for each NHP were applied to a reoriented virtual image using three-dimensional (3D) imaging software. The data between the 3D models and the clinical photos were statistically analyzed side by side. Paired t-tests were used to statistically analyze the measurements. Results: The average difference in the angles between the clinical photograph and the 3D model was $0.04^{\circ}$ for roll and $0.29^{\circ}$ for pitch. The paired t-tests for the roll data (P=0.781) and the pitch data (P=0.169) showed no significant difference between the clinical photographs and the 3D model (P>0.05). Conclusion: By overcoming the limitations of previous NHP-recording techniques, our new method can accurately record patient NHP in a time-efficient manner. Our method can also accurately transfer the NHP to a 3D virtual model.

Development of underwater 3D shape measurement system with improved radiation tolerance

  • Kim, Taewon;Choi, Youngsoo;Ko, Yun-ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1189-1198
    • /
    • 2021
  • When performing remote tasks using robots in nuclear power plants, a 3D shape measurement system is advantageous in improving the efficiency of remote operations by easily identifying the current state of the target object for example, size, shape, and distance information. Nuclear power plants have high-radiation and underwater environments therefore the electronic parts that comprise 3D shape measurement systems are prone to degradation and thus cannot be used for a long period of time. Also, given the refraction caused by a medium change in the underwater environment, optical design constraints and calibration methods for them are required. The present study proposed a method for developing an underwater 3D shape measurement system with improved radiation tolerance, which is composed of commercial electric parts and a stereo camera while being capable of easily and readily correcting underwater refraction. In an effort to improve its radiation tolerance, the number of parts that are exposed to a radiation environment was minimized to include only necessary components, such as a line beam laser, a motor to rotate the line beam laser, and a stereo camera. Given that a signal processing circuit and control circuit of the camera is susceptible to radiation, an image sensor and lens of the camera were separated from its main body to improve radiation tolerance. The prototype developed in the present study was made of commercial electric parts, and thus it was possible to improve the overall radiation tolerance at a relatively low cost. Also, it was easy to manufacture because there are few constraints for optical design.

Geometry of Resident's ridge with Multidetector-Row Computed Tomograph Image (다중검출기 컴퓨터 단층 영상 분석을 이용한 Resident's ridge의 형태학적 연구)

  • Roh, Jeong-Ho;Min, Byoung-Hyun;Park, Jeong-Wook;Ahn, Byung-Moon
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Purpose: The purpose of this study was to report the real geometry of Resident's ridge doing in anterior cruciate ligament reconstruction Materials and Methods: From Jan 2007 to Aug 2007, 48 cases which had normal distal femoral condyle analyzed with Multidetector-Row Computed Tomography. Resident's ridge was defined as change of height above 1 mm in lateral wall of intercondylar notch. Anterior-posterior length of intercondylar notch, length and height of Resident's ridge, distance of Resident's ridge from posterior cortex were estimated with 3-D reconstruction using $Lucion^{(R)}$ program. Results: Cases were $59{\pm}16$ years olds and male was 16 cases, female was 32 cases. 9 cases had no Resident's ridge, anterior-posterior length of intercondylar notch was $25.4{\pm}3.5$ mm, average of length and height of the Resident's ridge was $8.2{\pm}2.6,\;3.5{\pm}1.5$ mm. Distance of the Resident's ridge from posterior cortex was $7.6{\pm}2.6$ mm. Conclusion: Resident's ridge was used as landmark in anterior cruciate ligament reconstruction, which presented in many cases and which had distinct length and height.

  • PDF

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.

Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm ((2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계)

  • Jang, Byoung-Hee;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, we propose optimized RBFNNs based on night vision face recognition simulator with the aid of $(2D)^2$ PCA algorithm. It is difficult to obtain the night image for performing face recognition due to low brightness in case of image acquired through CCD camera at night. For this reason, a night vision camera is used to get images at night. Ada-Boost algorithm is also used for the detection of face images on both face and non-face image area. And the minimization of distortion phenomenon of the images is carried out by using the histogram equalization. These high-dimensional images are reduced to low-dimensional images by using $(2D)^2$ PCA algorithm. Face recognition is performed through polynomial-based RBFNNs classifier, and the essential design parameters of the classifiers are optimized by means of Differential Evolution(DE). The performance evaluation of the optimized RBFNNs based on $(2D)^2$ PCA is carried out with the aid of night vision face recognition system and IC&CI Lab data.

Application of 3-D Scanner to Analysis of Functional Instability of the Ankle

  • Han, Cheng-Chun;Kubo, Masakazu;Matsusaka, Nobuou;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1971-1975
    • /
    • 2003
  • This paper describes a technique, which analyzes the functional instability of the ankle using three-dimensional scanner. The technique is based on the structured light pattern projection method, which is performed by using one digital still camera and one LCD projector. This system can be easily realized with the low cost. The measuring result has high accuracy. The measuring error is about 0.2 mm or less. Using this technique the three-dimensional posture of the leg and foot of the target person are measured and analyzed.

  • PDF

Shape reconstruction of solder joints on PCB using laminography (라미노그라피를 이용한 전자회로기판의 납땜부 형상 복원)

  • 박원식;강성택;김형철;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.264-267
    • /
    • 1996
  • This paper is aimed to develop a very reliable method for automatic inspection of the solder joints on PCBS. There have been lots of previous works using vision technologies, but they can not be used for inspecting BGA, FCA or other newly used devices. Thus we adopt X-ray technologies for solder joint inspection. We put our attention on reconstructing the 3D shapes of solder joints since it gives us the most detailed information on quality of solder joints. Laminography principle is used to reject the interferences from neighboring parts or leads. To verify the effectiveness of laminography, a simulation study is performed in the case of a solder joints on double sided PCB using.

  • PDF

Diagnosis Based on EM Using Monopole Antenna (모노폴 안테나를 이용한 전자파기반 진단장치)

  • Lee, Jong-Moon;Kim, Hyuk-Je;Lee, Youn-Ju;Son, Seong-Ho;Jeon, Soon-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.227-228
    • /
    • 2008
  • A diagnosis based on EM is composed of multi-channel transceiver, antennas in illumination tank, liquid and image reconstruction algorithm for solving inverse scattering problem. The antennas in diagnosis were fabricated and measured in lossy liquid. The 10dB impedance bandwidth of the antenna is 600MHz - 3.5GHz

  • PDF

A Case of Thoracic Vertebral Chondroblastoma, Treated with 3-D Image Guided Resection and Reconstruction

  • Lee, Yoon-Ho;Shin, Dong-Ah;Kim, Keung-Nyun;Yoon, Do-Heum
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.2
    • /
    • pp.154-156
    • /
    • 2005
  • We present a case of chondroblastoma in the thoracic vertebra. A 40-year-old patient with upper back pain and lower extremity weakness was admitted to our clinic. On neurological examination, the patient exhibited lower extremity spastic paraparesis. Magnetic resonance imaging revealed a mass infiltrating the 7th thoracic vertebra and its adjacent structures with concomitant compression of the epidural space. After right upper lung tuberculoma was resected through the transthoracic approach, T7 total corpectomy was done with anterior stabilization using a MESH cage and T7 rib bone graft. Two weeks after the first operation, remained part of vertebra was removed and posterior stabilization was performed using a pedicle screw fixation and cross linkage bar with the assistance of the navigation system. The final pathologic diagnosis of the vertebral lesion was benign chondroblastoma.