Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.6
/
pp.201-211
/
2013
In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.2
/
pp.236-240
/
2004
Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.
Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
ETRI Journal
/
v.34
no.3
/
pp.466-469
/
2012
In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.2
/
pp.135-140
/
2012
The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.
This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.3
/
pp.171-176
/
2020
This paper presents an implementation of a gesture recognition platform that can be used in a factory workplaces. The platform consists of signages that display worker's job orders and a control center that is used to manage work orders for factory workers. Each worker does not need to bring work order documents and can browse the assigned work orders on the signage at his/her workplace. The contents of signage can be controlled by worker's hand and arm gestures. Gestures are extracted from body movement tracked by 3D depth camera and converted to the commandsthat control displayed content of the signage. Using the control center, the factory manager can assign tasks to each worker, upload work order documents to the system, and see each worker's progress. The implementation has been applied experimentally to a machining factory workplace. This flatform provides convenience for factory workers when they are working at workplaces, improves security of techincal documents, but can also be used to build smart factories.
The increase of the number of smartphone applications has enforced the importance of new user interface emergence and has raised the interest of research in the convergence of multiple sensors. In this paper, we propose a method for the convergence of acceleration, magnetic and gyro sensors to recognize the gesture from motion of user smartphone. The proposed method first obtain the 3D orientation of smartphone and recognize the gesture of hand motion by using HMM(Hidden Markov Model). The proposed method for the representation for 3D orientation of smartphone in spherical coordinate was used for quantization of smartphone orientation to be more sensitive in rotation axis. The experimental result shows that the success rate of our method is 93%.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.213-216
/
2021
본 논문에서는 Text Classification에 사용된 딥러닝 모델을 적용하여 행동 인식, 손동작 인식 및 감정 인식 방법을 제안한다. 먼저 라이브러리를 사용하여 영상에서 특징 추출 후 식을 적용하여 특징의 벡터를 저장한다. 이를 Conv1D, Transformer, GRU를 결합한 모델에 학습시킨다. 이 방법을 통해 하나의 딥러닝 모델을 사용하여 다양한 분야에 적용할 수 있다. 제안한 방법을 사용해 SYSU 3D HOI 데이터셋에서 99.66%, eNTERFACE' 05 데이터셋에 대해 99.0%, DHG-14 데이터셋에 대해 95.48%의 클래스 분류 정확도를 얻을 수 있었다.
Recent changes to ubiquitous computing requires more natural human-computer(HCI) interfaces that provide high information accessibility. Hand-gesture, i.e., gestures performed by one 'or two hands, is emerging as a viable technology to complement or replace conventional HCI technology. This paper deals with hand-posture recognition. Hand-posture database construction is important in hand-posture recognition. Human hand is composed of 27 bones and the movement of each joint is modeled by 23 degrees of freedom. Even for the same hand-posture,. grabbed images may differ depending on user's characteristic and relative position between the hand and cameras. To solve the difficulty in defining hand-postures and construct database effective in size, we present a method using a 3D hand model. Hand joint angles for each hand-posture and corresponding silhouette images from many viewpoints by projecting the model into image planes are used to construct the ?database. The proposed method does not require additional equations to define movement constraints of each joint. Also using the method, it is easy to get images of one hand-posture from many vi.ewpoints and distances. Hence it is possible to construct database more precisely and concretely. The validity of the method is evaluated by applying it to the hand-posture recognition system.
In this paper, we describe interactive contents which is used the result of the inputted interface recognizing vision-based body gesture. Because the content uses the imp which is the common culture as the subject in Asia, we can enjoy it with culture familiarity. And also since the player can use their own gesture to fight with the imp in the game, they are naturally absorbed in the game. And the users can choose the multiple endings of the contents in the end of the scenario. In the part of the gesture recognition, KINECT is used to obtain the three-dimensional coordinates of each joint of the limb to capture the static pose of the actions. The vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part Because gestures can be presented through sequential static poses, we recognize the gestures which are configured poses by using HMM In this paper, we describe the interactive content which is used as input interface by using gesture recognition result. So, we can control the contents using only user's gestures naturally. And we intended to improve the immersion and the interest by using the imp who is used real-time interaction with user.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.