• Title/Summary/Keyword: 3D genomics

Search Result 127, Processing Time 0.027 seconds

Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

  • Kwon, Yun-Jeong;Choi, Yuri;Eo, Jungwoo;Noh, Yu-Na;Gim, Jeong-An;Jung, Yi-Deun;Lee, Ja-Rang;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.142-148
    • /
    • 2013
  • SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives

  • Ramos, Ana A.;Polle, Jurgen;Tran, Duc;Cushman, John C.;Jin, Eon-Seon;Varela, Joao C.
    • ALGAE
    • /
    • v.26 no.1
    • /
    • pp.3-20
    • /
    • 2011
  • The physiology of the unicellular green alga Dunaliella salina in response to abiotic stress has been studied for several decades. Early D. salina research focused on its remarkable salinity tolerance and ability, upon exposure to various abiotic stresses, to accumulate high concentrations of $\beta$-carotene and other carotenoid pigments valued highly as nutraceuticals. The simple life cycle and growth requirements of D. salina make this organism one of the large-scale commercially exploited microalgae for natural carotenoids. Recent advances in genomics and proteomics now allow investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms and the development of molecular tools and techniques for D. salina will allow the improvement of physiological characteristics of algal strains and the use of transgenic algae in bioreactors. Here we review D. salina isoprenoid and carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for this alga that set the stage for its future use as a production system.

Differentially Expressed Genes in Hemocytes of Vibrio harveyi-challenged Shrimp Penaeus monodon

  • Somboonwiwat, Kunlaya;Supungul, Premruethai;Rimphanitchayakit, Vichien;Aoki, Takashi;Hirono, Ikuo;Tassanakajon, Anchalee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.26-36
    • /
    • 2006
  • Differential Display PCR technique (DD-PCR) was used for the analysis of altered gene expression in hemocytes of Vibrio harveyi-infected Penaeus monodon. Forty-four combinations of arbitrary and oligo(dT) primers were used to screen for differentially expressed genes. A total of 79 differentially expressed bands could be identified from 33 primer combinations. These included 48 bands (61%) whose expression level increased and 31 bands (39%) decreased after V. harveyi challenge. Subsequently, forty-eight differential display fragments were successfully reamplified and cloned. A total of 267 clones were randomly selected and sequenced. The sequence analysis showed that 85 (31%) out of 267 clones were matched with sequences in the GenBank database which represented 24 different genes with known functions. Among the known genes, glucose transporter 1, interferon-related developmental regulator 1, lysozyme, profilin, SERPINB3, were selected for further confirmation of their differentially expression patterns by real-time PCR. The results showed increasing in expression level of the selected genes in shrimp hemocytes after microbial challenge suggesting the involvement of such genes in bacterial response in shrimp. The anti-lipopolysaccharide factor type 3 (ALFPm3) gene, previously reported in P. monodon (Supungul et al., 2002) was found among the up-regulated genes but diversity due to amino acid changes was observed. Increase in ALFPm3 transcripts upon V. harveyi injection is in accordance with that found in the previous study.

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways

  • Park, Bong-Soo;Kim, Sung-Il;Song, Jong-Tae;Seo, Hak-Soo
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.342-347
    • /
    • 2012
  • Plant mitochondria possess alternative respiratory pathways mediated by the type II NAD(P)H dehydrogenases and alternative oxidases. Here, E3 SUMO ligase was shown to regulate alternative respiratory pathways and to participate in the maintenance of carbon and nitrogen balance in Arabidopsis. The transcript abundance of the type II NAD(P)H dehydrogenases NDA2 and NDB2 and alternative oxidases AOX1a and AOX1d genes was low in siz1-2 mutants compared to that in wild-type. The addition of nitrate or ammonium resulted in a decrease or an increase in the expression of the same gene families, respectively, in both wild-type and siz1-2 mutants. The amount of free sugar (glucose, fructose and sucrose) was lower in siz1-2 mutants than that in wild-type. These results indicate that low nitrate reductase activity due to the AtSIZ1 mutation is correlated with an overall decrease in alternative respiration and with a low carbohydrate content to maintain the carbon to nitrogen ratio in siz1-2 mutants.

Genome wide association study on feed conversion ratio using imputed sequence data in chickens

  • Wang, Jiaying;Yuan, Xiaolong;Ye, Shaopan;Huang, Shuwen;He, Yingting;Zhang, Hao;Li, Jiaqi;Zhang, Xiquan;Zhang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.494-500
    • /
    • 2019
  • Objective: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genomewide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.

De Novo Assembly and Comparative Analysis of the Enterococcus faecalis Genome (KACC 91532) from a Korean Neonate

  • Ham, Jun Sang;Kwak, Woori;Chang, Oun Ki;Han, Gi Sung;Jeong, Seok Geun;Seol, Kuk Hwan;Kim, Hyoun Wook;Kang, Geun Ho;Park, Beom Young;Lee, Hyun-Jeong;Kim, Jong Geun;Kim, Kyu-Won;Sung, Samsun;Lee, Taeheon;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.966-973
    • /
    • 2013
  • Using a newly constructed de novo assembly pipeline, finished genome level assembly had been conducted for the probiotic candidate strain E. faecalis KACC 91532 isolated from a stool samples of Korean neonates. Our gene prediction identified 3,061 genes in the assembled genome of the strain. Among these, nine genes were specific only for the E. faecalis KACC 91532, compared with all of the four known reference genomes (EF62, D32, V583, OG1RF). We identified genes related to phenotypic characters and detected E. faecalis KACC 91532-specific evolutionarily accelerated genes using dN/dS analysis. From these results, we found the potential risk of KACC 91532 as a useful probiotic strain and identified some candidate genetic variations that could affect the function of enzymes.

Potential Industrial Applications and Evolution of Carbohydrolases and Glycansucrases

  • Kim, Do-Man;Seo, Eun-Seong;Lee, Jin-Ha;Kang, Hee-Kyoung;Cho, Jae-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.215-218
    • /
    • 2004
  • Dextrans make up a class of polysaccharides that are D-glucans of various structures with contiguous $\alpha$-1longrightarrow6 ~6 glycosidic linkages in the main chains and $\alpha$-1longrightarrow2, $\alpha$-1longrightarrow3, or $\alpha$-1longrightarrow4 branch glycosidic linkages, depending on the specificity of the particular dextransucrase. Glucansucrases that catalyze glucans synthesis from sucrose. When other carbohydrates, in addition to sucrose, are present in the enzyme digest, the enzyme transfers glucose to the carbohydrate acceptors in the secondary reaction that diverts some of the glucose from incorporation into glucan. Many carbohydrate acceptors have been recognized and the products that result are dependent on the particular enzyme and the structure of the particular acceptor. Because of these unique catalytic characteristics, various dextransucrases have many important industrial and medical uses. To improve the understanding of their action mode and extend their applications, this study describes mechanism of glucan synthesis and potential industrial uses of dextransucrases, and our recent findings on the structural, functional organization and directed evolution of the glucansucrases to offer for designing glucansucrases with improved properties.

  • PDF

Genetic Relationships of Cattle Breeds Assessed by PCR-RFLP of the Bovine Mitochondrial DNA D-loop Region

  • Yoon, Du Hak;Lee, Hak Kyo;Oh, Sung Jung;Hong, Ki Chang;Jeon, Gwang Joo;Kong, Hong Sik;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1368-1374
    • /
    • 2005
  • To investigate the genetic relationships among various cattle breeds, bovine mtDNA D-loop region was used in 411 animals of 18 cattle breeds, including 8 Asian Bos taurus, 7 European Bos taurus, 1 Asian Bos indicus, and 2 African Bos indicus. The size of amplified PCR products from mtDNA D-loop region was 964 bp and the products were digested by 15 different restriction enzymes. Two different band patterns were identified in eight restriction enzymes (BstXI, Hae III, Msp I, Apa I, Taq I, Alu I, BamH I, EcoN I) and the rest of restriction enzymes showed more than 3 different band patterns among which Apo I and MspR9 resulted in 7 different restriction patterns. The genotypes, number of haplotype, effective number of haplotype, and degree of heterozygosity were analyzed. Based on all the PCR-RFLP data, different haplotypes were constructed and analyzed for calculating genetic distances between these breeds using Nei's unbiased method and constructing a phylogenetic tree.

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors

  • Chai, Han-Ha;Lim, Dajeong;Chai, Hee-Yeoul;Jung, Eunkyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.837-850
    • /
    • 2013
  • Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the rationale concept for changes in the structure to have more potent analogs focused on the class of arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling.

WebChemDB: An Integrated Chemical Database Retrieval System

  • Hou, Bo-Kyeng;Moon, Eun-Joung;Moon, Sung-Chul;Kim, Hae-Jin
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 2009
  • WebChemDB is an integrated chemical database retrieval system that provides access to over 8 million publicly available chemical structures, including related information on their biological activities and direct links to other public chemical resources, such as PubChem, ChEBI, and DrugBank. The data are publicly available over the web, using two-dimensional (2D) and three-dimensional (3D) structure retrieval systems with various filters and molecular descriptors. The web services API also provides researchers with functionalities to programmatically manipulate, search, and analyze the data.