• Title/Summary/Keyword: 3D genomics

Search Result 127, Processing Time 0.033 seconds

Association of an Anti-inflammatory Cytokine Gene IL4 Polymorphism with the Risk of Type 2 Diabetes Mellitus in Korean Populations

  • Go, Min-Jin;Min, Hae-Sook;Lee, Jong-Young;Kim, Sung-Soo;Kim, Yeon-Jung
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.114-120
    • /
    • 2011
  • Chronic inflammation has been implicated as one of the important etiological factors in insulin resistance and type 2 diabetes mellitus (T2DM). To investigate the role of anti-inflammatory cytokines in the development of T2DM, we conducted a case-control study to assess the association between IL4/IL4R polymorphisms and disease risk. We firstly identified single nucleotide poly-morphisms (SNP) at IL4 and IL4RA loci by sequencing the loci in Korean participants. Case-control studies were conducted by genotyping the SNPs in 474 T2DM cases and 470 non-diabetic controls recruited from community-based cohorts. Replication of the associated signals was performed in 1,216 cases and 1,352 controls. We assessed effect of IL4 -IL4RA interaction on T2DM using logistic regression method. The functional relevance of the SNP associated with disease risk was determined using a reporter expression assay. We identified a strong association between the IL4 promoter variant rs2243250 and T2DM risk (OR=0.77; 95% CI, 0.67~0.88; p=$1.65{\times}10^{-4}$ in the meta-analysis). The reporter gene expression assay demonstrated that the presence of rs2243250 might affect the gene expression level with ~1.5-fold allele difference. Our findings contribute to the identification of IL4 as a T2D susceptibility locus, further supporting the role of anti-inflammatory cytokines in T2DM disease development.

Identification of Gene Expression Signatures in Korean Acute Leukemia Patients

  • Lee kyung-Hun;Park Se-Won;Kim In-Ho;Yoon Sung-Soo;Park Seon-Yang;Kim Byoung-Kook
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.97-102
    • /
    • 2006
  • In acute leukemia patients, several successful methods of expression profiling have been used for various purposes, i.e., to identify new disease class, to select a therapeutic target, or to predict chemo-sensitivity and clinical outcome. In the present study, we tested the peripheral blood of 47 acute leukemia patients in an attempt to identify differentially expressed genes in AML and ALL using a Korean-made 10K oligo-nucleotide microarray. Methods: Total RNA was prepared from peripheral blood and amplified for microarray experimentation. SAM (significant analysis of microarray) and PAM (prediction analysis of microarray) were used to select significant genes. The selected genes were tested for in a test group, independently of the training group. Results: We identified 345 differentially expressed genes that differentiated AML and ALL patients (FWER<0.05). Genes were selected using the training group (n=35) and tested for in the test group (n=12). Both training group and test group discriminated AML and ALL patients accurately. Genes that showed relatively high expression in AML patients were deoxynucleotidyl transferase, pre-B lymphocyte gene 3, B-cell linker, CD9 antigen, lymphoid enhancer-binding factor 1, CD79B antigen, and early B-cell factor. Genes highly expressed in ALL patients were annexin A 1, amyloid beta (A4) precursor protein, amyloid beta (A4) precursor-like protein 2, cathepsin C, lysozyme (renal amyloidosis), myeloperoxidase, and hematopoietic prostaglandin D2 synthase. Conclusion: This study provided genome wide molecular signatures of Korean acute leukemia patients, which clearly identify AML and ALL. Given with other reported signatures, these molecular signatures provide a means of achieving a molecular diagnosis in Korean acute leukemia patents.

Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components

  • Ryu, Ri;Jung, Un Ju;Kim, Hye-Jin;Lee, Wonhwa;Bae, Jong-Sup;Park, Yong Bok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • Artemisia princeps Pampanini (AP) has been used as a traditional medicine in Korea, China and Japan and reported to exhibit various beneficial biological effects including anti-inflammatory, antioxidant, anti-atherogenic and lipid lowering activities; however, its antiplatelet and anticoagulant properties have not been studied. In the present study, we evaluated the effects of an ethanol extract of Artemisia princeps Pampanini (EAP) and its major flavonoids, eupatilin and jaceosidin, on platelet aggregation and coagulation. To determine the antiplatelet activity, arachidonic acid (AA)-, collagen- and ADP (adenosine diphosphate)-induced platelet aggregation were examined along with serotonin and thromboxane A2 ($TXA_2$) generation in vitro. The anticoagulant activity was determined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in vitro. The data showed that EAP and its major flavonoids, eupatilin and jaceosidin, significantly reduced AA-induced platelet aggregation and the generation of serotonin and $TXA_2$, although no significant change in platelet aggregation induced by collagen and ADP was observed. Moreover, EAP significantly prolonged the PT and aPTT. The PT and/or aPTT were significantly increased in the presence of eupatilin and jaceosidin. Thus, these results suggest that EAP may have the potential to prevent or improve thrombosis by inhibiting platelet activation and blood coagulation.

Microbial Rhodopsins: Genome-mining, Diversity, and Structure/Function

  • Jung, Kwang-Hwan;Vishwa Trivedi;Yang, Chii-Shen;Oleg A. Sineschekov;Elena N. Spudich;John L. Spudich
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.45-48
    • /
    • 2002
  • Microbial rhodopsins, photoactive 7-transmembrane helix proteins that use retinal as their chromophore, were observed initially in the Archaea and appeared to be restricted to extreme halophilic environments. Our understanding of the abundance and diversity of this family has been radically transformed by findings over the past three years. Genome sequencing of cultivated microbes as well as environmental genomics have unexpectedly revealed archaeal rhodopsin homologs in the other two domains of life as well, namely Bacteria and Eucarya. Organisms containing these homologs inhabit such diverse environments as salt flats, soil, freshwater, and surface and deep ocean waters, and they comprise a broad phylogenetic range of microbial life, including haloarchaea, proteobacteria, cyanobacteria, fungi, and algae. Analysis of the new microbial rhodopsins and their expression and structural and functional characterization reveal that they fulfill both ion transport and sensory functions in various organisms, and use a variety of signaling mechanisms. We have obtained the first crystallographic structure for a photosensory member of this family, the phototaxis receptor sensory rhodopsin II (SRII, also known as phoborhodopsin) that mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The structure obtained from x-ray diffraction of 3D crystals prepared in a cubic lipid phase reveals key features responsible for its spectral tuning and its sensory function. The mechanism of SRII signaling fits a unified model for transport and signaling in this widespread family of phototransducers.

  • PDF

One-year experience of oral substrate reduction therapy in three patients with Gaucher disease type I

  • Sohn, Young Bae;Kim, Yewon;Moon, Ji Eun
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.62-67
    • /
    • 2020
  • Purpose: Eliglustat is an oral substrate reduction therapy (SRT) approved for adults with Gaucher disease type I (GD1) who are extensive, intermediate, or poor CYP2D6 metabolizers. Here we report one-year experience of eliglustat switch therapy from long-term enzyme replacement therapy (ERT) in three adult patients with GD1. Materials and Methods: Medical history, clinical (hemoglobin concentration, platelet count, and bone mineral density) and biochemical parameters (angiotensin converting enzyme, total acid phosphatase, and lyso-gb1) of the patients were collected and evaluated by retrospective review of medical records at every 3, 6, or 12 month after switch to SRT. Results: Patient 1 was a 43-year old female diagnosed GD1 and her clinical and biochemical parameters were stabilized for more than 20 years by ERT. Due to the burden of regular hospital visit, she switched to SRT. During one-year of SRT, clinical parameters and biomarkers were maintained stable. However, after suffering acute febrile illness during SRT, she decided to re-switch to ERT due to concerns about drug interaction. Patient 2 was 41-year old male, younger brother of patient 1 and Patient 3 was 31-year old male. They switched to SRT in clinically stable condition with long-term ERT. The one-year SRT was tolerable without specific safety issue and the clinical parameters were maintained stable. Conclusion: One-year eliglustat therapy in three adult patients with GDI was generally tolerable and effective for maintaining the clinical parameters and biomarkers. However, the drug compliance, concurrent drug interactions, and long-term safety of eliglustat should be carefully monitored.

Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma

  • Rath, Sonali;Jagadeb, Manaswini;Bhuyan, Ruchi
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.46.1-46.11
    • /
    • 2021
  • Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.

Effect of Culture Media on Production of Biomass, Fatty Acid, and Carotenoid in a Newly Isolated Mychonastes sp. (신규 분리된 Mychonastes sp.의 생장, 지방산 및 색소 생산에 생장배지가 미치는 영향)

  • Yim, Kyung June;Jang, Hyun-Jin;Park, Yeji;Nam, Seung Won;Hwang, Byung Su;Jung, Ji Young;Lee, Chang Soo;Kim, Z-Hun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study examined the growth, fatty acid (FA) content, and carotenoids of a newly isolated freshwater microalga, Mychonastes sp. 246, in various culture media. The appropriate temperature and light intensity for culturing Mychonastes sp. 246 were determined as 18℃-22℃ and 200-250 µmol/m2/s using a high throughput photobioreactor. The microalgal cells were cultivated in 0.5 L bubble column photobioreactors using BG11, Bold's Basal media, and f/2 media. According to the growth results of the microalgae, BG11, among the tested media, showed the highest biomass concentrations (3.5 ± 0.1 g/L in 10 d). To enhance the biomass growth of the microalgae, the N:P ratio in BG11 was manipulated from 45:1 to 7:1 based on the stoichiometric cell composition. The biomass concentrations of Mychonastes sp. 246 grown on the manipulated BG11 (MBG) increased to 38% (4.6 ± 0.3 g/L in d) compared with the original BG11 (3.3 g/L). The FA content of the microalgae grown on the MBG was lower (8.4%) than that of the original BG11 (10.1%) while the FA compositions did not exhibit any significant differences. Furthermore, three kinds of carotenoids were identified in Mychonastes sp. 246, zeaxanthin, lutein, and β-carotene. These results suggest an effective strategy for increasing biomass concentrations, FA content, and carotenoids of microalgae by performing a simple N:P adjustment in the culture media.

An Analytical Validation of the GenesWellTM BCT Multigene Prognostic Test in Patients with Early Breast Cancer (조기 유방암 환자를 위한 다지표 예후 예측 검사 GenesWellTM BCT의 분석적 성능 시험)

  • Kim, Jee-Eun;Kang, Byeong-il;Bae, Seung-Min;Han, Saebom;Jun, Areum;Han, Jinil;Cho, Min-ah;Choi, Yoon-La;Lee, Jong-Heun;Moon, Young-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.79-87
    • /
    • 2017
  • GenesWell$^{TM}$ BCT is a 12-gene test suggesting the prognostic risk score (BCT Score) for distant metastasis within the first 10 years in early breast cancer patients with hormone receptor-positive, HER2-negative, and pN0~1 tumors. In this study, we validated the analytical performance of GenesWell$^{TM}$ BCT. Gene expression values were measured by a one-step, real-time qPCR, using RNA extracted from FFPE specimens of early breast cancer patients. Limit of Blank, Limit of Detection, and dynamic range for each of the 12 genes were assessed by serially diluted RNA pools. The analytical precision and specificity were evaluated by three different RNA samples representing low risk group, high risk group, and near-cutoff group in accordance with their BCT Scores. GenesWell$^{TM}$ BCT could detect gene expression of each of the 12 genes from less than $1ng/{\mu}L$ of RNA. Repeatability and reproducibility across multiple testing sites resulted in 100% and 98.3% consistencies of risk classification, respectively. Moreover, it was confirmed that the potential interference substances does not affect the risk classification of the test. The findings demonstrate that GenesWell$^{TM}$ BCT have high analytical performance with over 95% consistency for risk classification.

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.

Genetic Association Analysis of Fasting and 1- and 2-Hour Glucose Tolerance Test Data Using a Generalized Index of Dissimilarity Measure for the Korean Population

  • Yee, Jaeyong;Kim, Yongkang;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.181-186
    • /
    • 2016
  • Glucose tolerance tests have been devised to determine the speed of blood glucose clearance. Diabetes is often tested with the standard oral glucose tolerance test (OGTT), along with fasting glucose level. However, no single test may be sufficient for the diagnosis, and the World Health Organization (WHO)/International Diabetes Federation (IDF) has suggested composite criteria. Accordingly, a single multi-class trait was constructed with three of the fasting phenotypes and 1- and 2-hour OGTT phenotypes from the Korean Association Resource (KARE) project, and the genetic association was investigated. All of the 18 possible combinations made out of the 3 sets of classification for the individual phenotypes were taken into our analysis. These were possible due to a method that was recently developed by us for estimating genomic associations using a generalized index of dissimilarity. Eight single-nucleotide polymorphisms (SNPs) that were found to have the strongest main effect are reported with the corresponding genes. Four of them conform to previous reports, located in the CDKAL1 gene, while the other 4 SNPs are new findings. Two-order interacting SNP pairs of are also presented. One pair (rs2328549 and rs6486740) has a prominent association, where the two single-nucleotide polymorphism locations are CDKAL1 and GLT1D1. The latter has not been found to have a strong main effect. New findings may result from the proper construction and analysis of a composite trait.