• Title/Summary/Keyword: 3D finite elements

Search Result 389, Processing Time 0.036 seconds

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Effect of the thickness on the mixed mode crack front fields

  • Khan, Shafique M.A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.701-713
    • /
    • 2012
  • Results pertaining to 3D investigations on the effect of the thickness on the stress fields at the crack front are presented. A 3D finite element analysis is performed using a modified single edge-notched tension specimen configuration, with an inclined crack to include mixed mode I-II. A technique to mesh the crack front (3D) with singular finite elements in ANSYS without using third party software is introduced and used in this study. The effect of the specimen thickness is explicitly investigated for six thicknesses ranging from 1 to 32 mm. In addition, three crack inclination angles, including pure Mode-I, are used to study the effect of mixed-mode I-II fracture. An attempt is made to correlate the extent of a particular stress state along the crack front to thickness. In addition, ${\sigma}_{zz}/{\nu}({\sigma}_{xx}+{\sigma}_{yy})$ contours at the crack front are presented as a useful means to analyze the stress state.

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.75-89
    • /
    • 1995
  • A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.

J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front (J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.