• Title/Summary/Keyword: 3D finite elements

Search Result 389, Processing Time 0.026 seconds

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

A Study of Flutter Analysis for the Composite Box Wings with Various Laminates (다양한 적층각에 대한 상자형 복합재료 날개의 플러터 특성연구)

  • Chung, Y.H.;Kwon, H.J.;Kim, D.H.;Lee, I.;Kim, C.G.
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, the flutter analysis for a rectangular box wing and an actual fighter wing with composite shin, aluminum spar and aluminum rib has been conducted. A conservative 3D wing-box model of an actual wing is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The finite elements of membrane, rod and shear panel are used. Using the practical ply angles, various composite laminates are composed and analysed. The DLM code which is linear aerodynamic theory in frequency domain is applied to calculate unsteady aerodynamic pressure in subsonic flow region and the V-g and p-k methods are applied to obtain the solution of aeroelastic governing equation in frequency domain.

Development of Smart CAD/CAM System for Machining Center Based on B-Rep Solid Modeling Techniques (I) (A Study on the B-Rep Solid Modeler using Half Edge Data Structure) (B-Rep 솔리드모델을 이용한 머시닝 센터용 CAC/CAM 시스템 개발(1): 반모서리 자료구조의 B-Rep 솔리드모델러에 관한 연구)

  • 양희구;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.689-694
    • /
    • 1994
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interference check between solids, the structural design of machine tools and robots and so on.

  • PDF

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

Characterization of Composite Frame for Enhancing Energy Harvesting Function of a Smart Shoes (스마트 슈즈의 에너지 하베스팅 기능향상을 위한 복합재료 프레임 특성평가)

  • Lee, Ho-Seok;Jung, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.400-405
    • /
    • 2021
  • In this study, a composite material frame was designed to increase the energy harvesting efficiency of polyvinylidene fluoride (PVDF) ribbon harvesters which are installed inside smart shoes. In order to minimize the amount of deformation in the load direction of the frame, it was designed using carbon continuous fiber composites and its complex shaped structure was manufactured using a 3D printer. In order to calculate the amount of deformation of the insole and midsole of the shoes under the condition of the load generated during walking, the insole and midsole were modeled using the distributed spring elements. Using finite element analysis, the elongation of ribbon-type harvesters mounted on smart shoes was calculated during walking. It is expected that the predicted elongation of the harvester can be utilized to increase the energy harvesting efficiency of smart shoes.

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.