• 제목/요약/키워드: 3D finite elements

Search Result 389, Processing Time 0.03 seconds

Experimental and numerical investigations on reinforcement arrangements in RC deep beams

  • Husem, Metin;Yilmaz, Mehmet;Cosgun, Suleyman I.
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.243-254
    • /
    • 2022
  • Reinforced concrete (RC) deep beams are critical structural elements used in offshore pile caps, rectangular cross-section water tanks, silo structures, transfer beams in high-rise buildings, and bent caps. As a result of the low shear span ratio to effective depth (a/d) in deep beams, arch action occurs, which leads to shear failure. Several studies have been carried out to improve the shear resistance of RC deep beams and avoid brittle fracture behavior in recent years. This study was performed to investigate the behavior of RC deep beams numerically and experimentally with different reinforcement arrangements. Deep beams with four different reinforcement arrangements were produced and tested under monotonic static loading in the study's scope. The horizontal and vertical shear reinforcement members were changed in the test specimens to obtain the effects of different reinforcement arrangements. However, the rebars used for tension and the vertical shear reinforcement ratio were constant. In addition, the behavior of each deep beam was obtained numerically with commercial finite element analysis (FEA) software ABAQUS, and the findings were compared with the experimental results. The results showed that the reinforcements placed diagonally significantly increased the load-carrying and energy absorption capacities of RC deep beams. Moreover, an apparent plastic plateau was seen in the load-displacement curves of these test specimens in question (DE-2 and DE-3). This finding also indicated that diagonally located reinforcements improve displacement ductility. Also, the numerical results showed that the FEM method could be used to accurately predict RC deep beams'behavior with different reinforcement arrangements.

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Finite Element Analysis of Eddy Current Testing for Tubes with 3-Dimensional Defects (3차원 관결함에 대한 와전류탐상의 유한요소해석)

  • Lee, Hyang-Beom;Won, Sung-Yean;Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • In this paper, a numerical analysis using the finite element method (FEM) is presented which models the eddy current testing (ECT) of tubes with 3-dimensional defects. For the description of 3-dimensional eddy current problems, the governing equation is derived from the Maxwell's equations. The 3-dimensional FEM formulation with hexahedral elements is carried out using the Galerkin weighted residual method. The INCONEL 600 steam generator tube with inner and outer diameter defects is adopted for the numerical analysis, and the ECT signal, which is the trajectory of the probe impedance, is calculated. For the verification of the numerical analysis method, results of numerical calculations and experiments are compared and they show good agreements. Based on this verification, several defect signals are predicted and their characteristics are investigated with the variation in the defect depth and the circumferential angle of the defect.

  • PDF

Numerical Simulation of Cold Compaction of 3D Granular Packings

  • Chen, Yuan;Imbault, Didier;Doremus, Pierre
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.189-190
    • /
    • 2006
  • During cold compaction processes loose powder is pressed under tooling action in order to produce complex shaped engineering components. Here, the analysis of the plastic deformation of granular packings is of fundamental importance to the development of computer simulation models. Powders can be idealized by packing discrete particles, where each particle is a sphere meshed with finite elements. The pressing of a body centered cubic packing was compared with numerical prediction and experimental data. The global response was expressed in force-displacement curve, and the accuracy of the numerical models analyzed for high relative densities up to 0.95.

  • PDF

Finite Element Modeling of Geogrid-Encased Stone Column in Soft Ground (연약지반에 시공된 지오그리드 보강 쇄석기둥 공법의 유한요소모델링)

  • Yoo, Chung-Sik;Song, Ah-Ran;Kim, Sun-Bin;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.133-150
    • /
    • 2007
  • This paper presents the results of a research performed to investigate the finite element modeling approach for GESC (Geogrid-Encased Stone Column) method in soft ground within the framework of stress-pore pressure coupled analysis. GESC reinforcement mechanism and construction method was first examined and model verification of stone column on the results of FE analysis was identified. The results indicate that the 3D FE analysis and membrane elements play the most important role in the soft groung using GESC. Based on the results, a modeling method was suggested for stress-pore pressure coupled finite element modelling of GESC in soft ground.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.

Construction of Truss Bridge Database for 3-D Shape and Structural Analysis Information by using ISO10303 Application Protocols (ISO10303 응용프로토콜을 이용한 트러스교의 3차원 형상 및 해석정보 데이터베이스 구축)

  • Lim, Seung-Wan;Kim, Bong-Geun;Kim, Hyo-Jin;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2009
  • A web-based information management system to share engineering data of truss bridge is developed through construction of standardized database of truss bridge. 3D shape information is stored in database according to AP 203 of STEP, and 3D visualization on the web is implemented by using the web 3D technology that helps users to understand geometrical shape of structures, directly. AP209 is used to store structural analysis information such as finite elements, material properties, and analysis result into relational database. Based on the developed database, a prototype of integrated information management system for truss bridge is developed, and it provides additional information such as specifications and inspection information related with shape object to end users.

  • PDF