• Title/Summary/Keyword: 3D feature optimization

Search Result 24, Processing Time 0.021 seconds

Feature Detection using Measured 3D Data and Image Data (3차원 측정 데이터와 영상 데이터를 이용한 특징 형상 검출)

  • Kim, Hansol;Jung, Keonhwa;Chang, Minho;Kim, Junho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.601-606
    • /
    • 2013
  • 3D scanning is a technique to measure the 3D shape information of the object. Shape information obtained by 3D scanning is expressed either as point cloud or as polygon mesh type data that can be widely used in various areas such as reverse engineering and quality inspection. 3D scanning should be performed as accurate as possible since the scanned data is highly required to detect the features on an object in order to scan the shape of the object more precisely. In this study, we propose the method on finding the location of feature more accurately, based on the extended Biplane SNAKE with global optimization. In each iteration, we project the feature lines obtained by the extended Biplane SNAKE into each image plane and move the feature lines to the features on each image. We have applied this approach to real models to verify the proposed optimization algorithm.

Performance Analysis of Optimization Method and Filtering Method for Feature-based Monocular Visual SLAM (특징점 기반 단안 영상 SLAM의 최적화 기법 및 필터링 기법 성능 분석)

  • Jeon, Jin-Seok;Kim, Hyo-Joong;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.182-188
    • /
    • 2019
  • Autonomous mobile robots need SLAM (simultaneous localization and mapping) to look for the location and simultaneously to make the map around the location. In order to achieve visual SLAM, it is necessary to form an algorithm that detects and extracts feature points from camera images, and gets the camera pose and 3D points of the features. In this paper, we propose MPROSAC algorithm which combines MSAC and PROSAC, and compare the performance of optimization method and the filtering method for feature-based monocular visual SLAM. Sparse Bundle Adjustment (SBA) is used for the optimization method and the extended Kalman filter is used for the filtering method.

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

Model-based 3-D object recognition using hopfield neural network (Hopfield 신경회로망을 이용한 모델 기반형 3차원 물체 인식)

  • 정우상;송호근;김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.60-72
    • /
    • 1996
  • In this paper, a enw model-base three-dimensional (3-D) object recognition mehtod using hopfield network is proposed. To minimize deformation of feature values on 3-D rotation, we select 3-D shape features and 3-D relational features which have rotational invariant characteristics. Then these feature values are normalized to have scale invariant characteristics, also. The input features are matched with model features by optimization process of hopjfield network in the form of two dimensional arrayed neurons. Experimental results on object classification and object matching with the 3-D rotated, scale changed, an dpartial oculued objects show good performance of proposed method.

  • PDF

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.

Image Registration for High-Quality Vessel Visualization in Angiography (혈관조영영상에서 고화질 혈관가시화를 위한 영상정합)

  • Hong, Helen;Lee, Ho;Shin, Yeong-Gil
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Optimization of 3D target feature-map using modular mART neural network (모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화)

  • 차진우;류충상;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

Multi-Marker Augmented Reality System using Marker-Based Tracking with Vuforia

  • Yun, Hyun-Noh;Kim, Gi-Seong;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • As interest in augmented reality has increased recently, attempts have been made to incorporate augmented reality into various fields. In implementing augmented reality, the method by which markers are used is to extract feature points of markers to recognize 3D coordinates and, in some cases, it is necessary to recognize multiple markers simultaneously. Therefore, this paper proposes optimization methods for recognising multiple markers at the same time. Unity 3D and augmented reality library Vuforia are used to implement the experimental environment. The augmented reality program produced was implemented in an application form and tested using a mobile camera. We looked for optimization methods for manufacturing markers directly and for recognizing multiple markers through changes in the experimental environment. The results of the experiment can provide a higher recognition rate in an environment where multiple marker recognition is required later.

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.