• Title/Summary/Keyword: 3D failure criterion

Search Result 59, Processing Time 0.023 seconds

Direct Lagrangian-based FSI formulation for seismic analysis of reinforced concrete circular liquid-containing tanks

  • Erfan Shafei;Changiz Gheyratmand;Saeed Tariverdilo
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.165-176
    • /
    • 2024
  • In this study, a direct Lagrangian-based three-dimensional computational procedure is developed to evaluate the seismic performance of reinforced concrete liquid-containing circular tanks (RC-LCT). In this approach, fluid-structure interaction (FSI), material nonlinearity, and liquid-structure large deformations are formulated realistically. Liquid is modeled using Mie-Grüneisen equation of state (EOS) in compressible form considering the convective and impulsive motions of fluid. The developed numerical framework is validated based on a previous study. Further, nonlinear analyses are carried out to assess the seismic performance of RC-LCT with various diameter-to-liquid height ratios ranging from 2.5 to 4.0. Based on observations, semi-deep tanks (i.e., D/Hl=2.5) show low collapse ductility due to their shear failure mode while shallow tanks (i.e., D/Hl=4.0) behave in a more ductile manner due to their dominant wall membrane action. Furthermore, the semi-deep tanks provide the least over-strength and ductility due to their catastrophic failure with little energy dissipation. This study shows that LCTs can be categorized as between immediately operational and life safety levels and therefore a drift limiting criterion is necessary to prevent probable damages during earthquakes.

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

3D Non-linear Analysis of Interlaminar Stress around the Hole Edge of Orthotropic Laminates (직교이방성 적층판의 Hole단부의 3D 비선형 층간응력 해석)

  • SONG KWAN-HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.36-42
    • /
    • 2004
  • Orthotropic laminates, such as [$0^{\circ}6$/$90^{\circ}6$]s and [$90^{\circ}6$/$0^{\circ}6$]s, were performed, using a commercial nonlinear finite element method. Interlaminar stress distributions, around the hole curve free-edge, were calculated. The delamination bearing strengths of pin joints were predicted, using the modified delamination failure criterion. These stress distributions were presented along the radial lines and around the free-edge of the hole. Further, three-dimensional non-linear contact analysis of orthotropic laminates was conducted to investigate the effect of friction. In this paper, laminates with a circular hole were taken to study interlaminar stresses the curved edge. This study may assist in the design of a thick composite laminate with mechanically pin joints.

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.

Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates (얇은 표적체판에 천공하는 PELE 의 파괴 메커니즘 수치시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1577-1583
    • /
    • 2012
  • Penetrator with enhanced lateral effect (PELE) is a novel projectile that does not require dynamite and a fuse. It comprises a high-density jacket that is closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE using AUTODYN-3D code, the calculation models of the projectile body and the bullet target were developed and the process of penetrating an aluminum-2024 alloy target using PELE was simulated. The scattering characteristics after PELE penetrated the aluminum-2024 alloy target were studied for different filling materials. The explicit finite element analysis of PELE fragmentation was implemented with the stochastic failure criterion in AUTODYN-3D code. As the filling expanded, the fragments gained velocity and dispersed laterally, increasing the damage area considerably. The number and shape of PELE fragments differed depending on the impact pressure of the filling that fragmented during the penetration and lateral dispersion processes.

Experimental and analytical studies on one-way concrete slabs reinforced with GFRP molded gratings

  • Mehrdad, Shokrieh Mahmood;Mohammad, Heidari-Rarani
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.569-584
    • /
    • 2009
  • Corrosion of steel rebars in bridge decks which are faced to harsh conditions, is a common problem in construction industries due to the porosity of concrete. In this research, the behavior of one-way concrete slabs reinforced with Glass fiber reinforced polymer (GFRP) molded grating is investigated both theoretically and experimentally. In the analytical method, a closed-form solution for load-deflection behavior of a slab under four-point bending condition is developed by considering a concrete slab as an orthotropic plate and defining stiffness coefficients in principal directions. The available formulation for concrete reinforced with steel is expanded for concrete reinforced with GFRP molded grating to predict ultimate failure load. In finite element modeling, an exact nonlinear behavior of concrete along with a 3-D failure criterion for cracking and crushing are considered in order to estimate the ultimate failure load and the initial cracking load. Eight concrete slabs reinforced with steel and GFRP grating in various thicknesses are also tested to verify the results. The obtained results from the models and experiments are relatively satisfactory.

Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure

  • Karantoni, Fillitsa;Tsionis, Georgios;Lyrantzaki, Foteini;Fardis, Michael N.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.689-713
    • /
    • 2014
  • The seismic vulnerability of stone masonry buildings is studied on the basis of their fragility curves. In order to account for out-of-plane failure modes, normally disregarded in past studies, linear static Finite Element analysis in 3D of prototype regular buildings is performed using a nonlinear biaxial failure criterion for masonry. More than 1100 analyses are carried out, so as to cover the practical range of the most important parameters, namely the number of storeys, percentage of side length in exterior walls taken up by openings, wall thickness, plan dimensions and number of interior walls, type of floor and pier height-to-length ratio. Results are presented in the form of damage and fragility curves. The fragility curves correspond well to the damage observed in masonry buildings after strong earthquakes and are in good agreement with other fragility curves in the literature. They confirm what is already known, namely that buildings with stiff floors or higher percentage of load-bearing walls are less vulnerable, and that large openings, taller storeys, larger number of storeys, higher wall slenderness and higher ratio of clear height to horizontal length of walls increase the vulnerability, but show also by how much.

A Study on Estimation of Failure Probability of Allowable Stress Design using Reliability Analysis to the Bearing Capacity the Deep Water Depth Large-diameter Drilled Shaft (대수심 대구경 현장타설말뚝의 지지력에 대한 신뢰성 해석을 이용한 허용응력 설계의 파괴확률 평가 연구)

  • Han, Yushik;Lee, Yunkyu;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • A Large-diameter drilled shaft of deep water depth composite foundation supporting a high rise pylon of the test designed super long span bridge was designed by allowable stress design method and failure probability through reliability analysis to bearing capacity was estimated. The allowable stress design results for the bearing capacity of a drilled shaft were analyzed by reliability analysis and the probability of failure shows 0.12 % in case of CFEM, 0.0002 % in case of Korea Highway Corporation criterion, and 0.003 % in case of structure foundation design criterion. In the allowable stress design, the bearing capacity of a large-diameter drilled shaft was obtained by applying to safety factor 3 and reliability analysis for the results was done. If the failure probability suggested by AASHTO(2007) specification is set to 0.02 %, the socketed length of a drilled shaft shows an increase of 25 % in CFEM, decrease of 60 % in KHCC, and decrease of 89 % in SFDC.

Coalescence Pressure of Steam Generator Tubes with Two Different-Sized Collinear Axial Through-Wall Clacks (길이가 다른 두 개의 축방향 관통균열이 동일선상에 존재하는 증기발생기 세관의 균열 합체 압력)

  • Huh Nam-Su;Chang Yoon-Suk;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1255-1260
    • /
    • 2006
  • To maintain the structural integrity of steam generator tubes, 40% of wall thickness plugging criterion has been developed. The approach is for the steam generator tube with single crack, so that the interaction effect of multiple cracks can not be considered. Although, recently, several approaches have been proposed to assess the integrity of steam generator tube with two identical cracks whilst actual multiple cracks reveal more complex shape. In this paper, the coalescence pressure of steam generator tube containing multiple cracks of different length is evaluated based on the detailed 3-dimensional (3-D) elastic-plastic finite element (FE) analyses. In terms of the crack shape, two collinear axial through-wall cracks with different length were considered. Furthermore, the resulting FE coalescence pressures are compared with FE coalescence pressures and experimental results for two identical collinear axial through-wall cracks to quantify the effect of crack length ratio on failure behavior of steam generator tube with multiple cracks. Finally, based on 3-D FE results, the coalescence evaluation diagrams were proposed.