• 제목/요약/키워드: 3D enhancement

검색결과 818건 처리시간 0.027초

Efficiency Enhancement of Wireless Power Transfer with Optimum Coupling Mechanism for Mid-range Operation

  • Anowar, Tanbir Ibne;Kumar, Narendra;Ramiah, Harikrishnan;Reza, Ahmed Wasif
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1556-1565
    • /
    • 2017
  • This paper depicts the design, implementation and analysis of efficient resonant based wireless power transfer (WPT) technique using three magnetic coupled coils. This work is suitable for mid ranged device due to small form factor while minimizing the loading effect. A multi turned loop size resonator is exploited for both the transmitter and receiver for longer distance. In this paper, class-E power amplifier (class-E PA) is introduced with an optimum power tracking mechanism of WPT system to enhance the power capability at mid-range with a flat gain. A robust method of finding optimum distance is derived with an experimental analysis of the designed system. In this method, the load sensitive issue of WPT is resolved by tuning coupling coefficient at considerable distances. Our designed PA with a drain efficiency of 77.8% for a maximum output of 5W is used with adopted tuning technique that improves the overall WPT system performance by 3 dB at various operating points.

Enhancement of Calcium-Binding Quality of Proglycinin Peptides by Chemical Phosphorylation

  • Yang, Jung-Ik;Lee, Shin-Hee;Hahm, Dae-Hyun;Kim, Il-Hwan;Choi, Sang-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.607-611
    • /
    • 2004
  • Glycinin, one of the predominant storage proteins in soybeans, was examined as to whether it could be used as a calcium-binding mediator after chemical phosphorylation and enzymatic hydrolysis. Glycinin is composed of six subunits. One of the proglycinin subunits $(A_{la}B_{lb})$ was overexpressed in E. coli to obtain nonphosphorylated proteins with homogeneity. To investigate the enhanced calcium-binding properties of the phosphopeptides, the proglycinin was purified, phosphorylated, and hydrolyzed with trypsin. The proglycinin expressed in E. coli was purified by ammonium sulfate precipitation, ion-exchange chromatography, and cryoprecipitation. Chemical phosphorylation by sodium trimetaphosphate was performed to obtain phosphorylated proglycinin. After the phosphorylation, one-dimensional isoelectric focusing gel electroanalysis confirmed the phosphorylation of the proglycinin. The phosphorylated peptides were then hydrolyzed with trypsin, followed by a binding reaction with calcium chloride. The calcium-bound phosphopeptides were finally separated using immobilized metal $(Ca^{2+})$ chromatography. Consequently, a limited tryptic hydrolysate of the isolated phosphopeptides exhibited an enhanced calcium-binding ability, suggesting the potential of glycinin phosphopeptides as a calcium-binding mediator with greater availability.

채널 역변환 매트릭스의 가장 큰 싱귤러 값 영향을 줄이는 다중 사용자 프리코딩 (Power Efficient Precoding by Reducing the Effect of the Largest Singular Value of channel Inverse Matrix)

  • 노세용;양현욱;정정화
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.115-120
    • /
    • 2012
  • In multi-user multi-input multi-output (MU-MIMO) system, zero forcing beamforming (ZFB) is regarded as a realistic solution for transmitting scheme due to its low complexity and simple structure. However, ZFB shows a significant performance degradation when channel matrix has large condition number. In this case, the largest singular value of the channel inversion matrix has a dominant effect on transmit power. In this paper, we propose a perturbation method for reducing an effect of the dominant singular value. In the proposed algorithm, channel inverse matrix is first decomposed by SVD for the transmit signal to be expressed as a combination of singular vectors. Then, the transmit signal is perturbed to reduce the coefficient of the singular vector corresponding to the largest singular value. When a number of transmit antennas is 4, the simulation results of this paper shows that the proposed method shows 8dB performance enhancement at 10-3 uncoded bit error rate (BER) compared with conventional ZFB. Also, the simulation results show that the proposed method provides a comparable performance to Tomlinson-Harashima Precoding (THP) with much lower complexity.

ASIC을 이용한 고속의료영상처리보드의 개발을 위한 기초연구 (Researches of the Real-time Medical Imaging Precessing Board using ASIC architecture)

  • 서지현;박홍민;하태환;남상희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.299-300
    • /
    • 1998
  • Recently the development of medical modality like as MRI, 3D US, DR etc is very active. Therefore it is more required not only the enhancement of quality in medical service but the improvement of medical system based on quantization, minimization, and optimization of high speed. Especially, as the changing into the digital modality system, it gets to start using ASIC(Application Specific Integrated Circuit) to realize one board system. It requires the implementation of hardware debugging and effective speedy algorithm with more speed and accuracy in order to support and replace existing device. If objected image could be linked to high speed process board with special interface and pre-processed using FPGA, it can be used in real time image processing and protocol of HIS(Hospital Information System). This study can support the basic circuit design of medical image board which is able to realize image processing basically using digitalized medical image, and to interface between existing device and image board containing image processing algorithm.

  • PDF

Development of Simple Solvent Treating Methods to Enhance the Efficiency of Small-Molecule Organic Solar Cells

  • Kim, Jin-Hyun;Heo, Il-Su;Gong, Hye-Jin;Yu, Yeon-Gyu;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2012
  • The interface morphology of organic active layers is known to play a crucial role in the performance of organic photovoltaic (OPV) cells. Especially, a controlled nanostructure with a large contact area between electron donor (D) and acceptor (A) layers is necessary to improve the power conversion efficiency (PCE) of the cells since the short exciton diffusion lengths in organic semiconductors limit the charge (hole and electron) separation before excitons recombination. In this work, we developed simple solvent treating methods to fabricate a nanostructured DA interface and applied them to enhance the PCE of ZnPc/C60 based small molecule OPV cells. Interestingly, it was observed that the solvent treatment on the donor layer prior to the deposition of the acceptor layer resulted in a significant decrease in PCE, which was due to an existence of undesirable voids at the DA interface. Instead, the solvent vapor treatment after the DA bilayer formation led to densely packed and well dispersed DA contacts. Consequently, 3-fold enhancement of PCE as compared to the untreated bilayer cell was accomplished.

  • PDF

표면결함식각 및 반사방지막 열처리에 따른 태양전지의 효율 개선 (Silicon Solar Cell Efficiency Improvement with surface Damage Removal Etching and Anti-reflection Coating Process)

  • 조찬섭;오정화;이병렬;김봉환
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.29-35
    • /
    • 2014
  • In this study general solar cell production process was complemented, with research on improvement of solar cell efficiency through surface structure and thermal annealing process. Firstly, to form the pyramid structure, the saw damage removal (SDR) processed surface was undergone texturing process with reactive ion etching (RIE). Then, for the formation of smooth pyramid structure to facilitate uniform doping and electrode formation, the surface was etched with HND(HF : HNO3 : D.I. water=5 : 100 : 100) solution. Notably, due to uniform doping the leakage current decreased greatly. Also, for the enhancement and maintenance of minority carrier lifetime, antireflection coating thermal annealing was done. To maintain this increased lifetime, front electrode was formed through Au plating process without high temperature firing process. Through these changes in two processes, the leakage current effect could be decreased and furthermore, the conversion efficiency could be increased. Therefore, compared to the general solar cell with a conversion efficiency of 15.89%, production of high efficiency solar cell with a conversion efficiency of 17.24% was made possible.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

하지에 인가한 전기 자극이 자세안정성에 미치는 영향 (Effects of Postural Stability using Electrical Stimulation on the Lower Limb)

  • 이선연;유미;김동욱;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.255-262
    • /
    • 2009
  • The present study analyzed the association between postural control and electrical stimulation by measuring body sway when use the electrical stimulations were applied to different stimulation zones in lower limbs. The subjects were 14 young adults and were, tested for two different visual condition: eyes open and eyes closed. The experiments were also performed in two different stance case: one legged stance and two legged stance while electrical stimulations were applied concurrently or individually to tibialis anterior and triceps surae. Postural responses were assessed by analyzing COP sway path, sum of COP sway measured by a forceplate. The results showed that the direction of the COP shift changed in accordance with the direction of stimulation and showed sensory adaptation as the experiment progressed for two legged stance case. For one legged stance case, concurrent electrical stimulation both sides of muscles was found to be effective for enhancement of postural balance control.

Fermentation of MR-387A and H, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387 : Carbon and Nitrogen Catabolite Repression of Inhibitor Formation

  • Kho, Yung-Hee;Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Choong-Hwan;Lee, Ho-Jae;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.158-162
    • /
    • 1995
  • The effect of carbon and nitrogen sources on the production of novel aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. High D-glucose and ammonia concentrations (5$\%$ and 1$\%$, respectively) exerted a negative influence on the inhibitor formation. The suppressive effect of glucose on the inhibitor formation is probably caused by an effect of medium pH rather than that of cyclic AMP. To establish the optimum conditions for inhibitor overproduction, various nitrogen sources and ammonium ion-trapping agents were examined. The use of ammonia slow-releasing nitrogen sources such as soybean meal and fish meal, or ammonium ion-trapping agents such as kaoline, celite, and natural zeolite achieved the enhancement of inhibitor production. These results also indicate that inhibitor formation is affected by ammonium ion repression.

  • PDF

Bacillus subtilis Fermentation for Enhancement of Feed Nutritive Value of Soybean Meal

  • Kook, Moo-Chang;Cho, Seok-Cheol;Hong, Young-Ho;Park, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.183-188
    • /
    • 2014
  • In order to increase the nutritional quality of soybean meal (SBM) as an animal feed, Bacillus subtilis TP6, a previously isolated strain from an Indonesian traditional fermented soybean food, Tempeh, was used as a starter organism for solid-state fermentation. In the pre-treated SBM with water content of 60% (v/w), B. subtilis TP6 was grown to a maximum viable cell number of $3.5{\times}10^9CFU/g$. Compared to control, crude protein in Bacillus fermented SBM was increased by 16%, while raffinose, stachyose, and trypsin inhibitors were reduced by 31, 37, and 90%, respectively. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that proteins in the fermented SBM were remarkably hydrolyzed into smaller molecular masses, resulting in a decrease in large sized proteins. Our data suggested that B. subtilis fermentation could increase the nutritive value of SBM through reduction of anti-nutritive factors and improvement of protein quality by hydrolysis of soy protein. In addition, B. subtilis TP6 produced a functional ingredient, poly-${\gamma}$-glutamic acid which has various health benefits.