• Title/Summary/Keyword: 3D display system

Search Result 602, Processing Time 0.029 seconds

A novel illumination system design for application in the integrated screen 3D display

  • Lin, Chu-Hsun;Lin, Chun-Chuan;Lo, Hsin-Hsiang;Chung, Shuang-Chao;Chen, Tian-Yuan;Wang, Chy-Lin
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • A mini-projector prototype employing a LED light source, a nontelecentric structure, and an LCOS panel for application in the integrated 3D display was fabricated. A seamless image was obtained by tilting an array of mini-projectors. Seamless quality was created by the excellent uniformity of the projection intensity on the mini-projector's screen, which was simulated as 98.34%. Great uniformity can be realized by optimizing the design of the light source and the optics configuration, which is the key to such realization.

Universal Stereoscopic Display Using 64 LCD's

  • Takaki, Yasuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.289-292
    • /
    • 2002
  • A new technique to construct an auto-stereoscopic display that offers massive horizontal parallax images is proposed Multiple telecetnric imaging systems are arranged in a modified 2D array. The horizontal parallax images displayed by LCD panels are imaged to be superimposed on a 3D screen. All parallax images are displayed in the different horizontal directions because all imaging systems have different horizontal positions. The difference of the vertical display directions due to the imaging system's vertical positions is canceled by a vertical diffuser placed at the 3D screen. Observers can percept 3D images with the binocular disparity, the vergence, and the smooth motion parallax. In addition, the accommodation function may also work because a number of parallax images are displayed with a very small angle interval in the horizontal direction. A prototype 3D display including 64 color LCD panels was constructed.

  • PDF

A New 3-D Display Without Glasses Using $Moir\acute{e}$ System

  • Yamada, Chihiko;Isono, Haruo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.428-431
    • /
    • 2004
  • This paper proposes a new 3-D display without glasses using $Moir\acute{e}$ system. It is possible to create a new three-dimensional expression that is different from conventional 3-Dimages. In this study we have geometrically analyzed the process by which moire takes on a three-dimensional property and validated the results of this analysis.

  • PDF

Volumetric 3D Display System Based on Rotating Dot-Matrix LEDs

  • Lin, Yuanfang;Liu, Xu;Zhang, Xiaojie;Yao, Yi;Liu, Xiangdong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.440-441
    • /
    • 2004
  • A volumetric three-dimensional (3D) display system was presented, which utilizes a rotating two-dimensional (2D) display panel of light emitting diodes (LEDs) to generate more than 10 million volume pixels (voxels) within a cylindrical volume of 165 mm in height and 292 mm in diameter. Due to persistence of vision, momentarily addressed voxel information is perceived and fused into a 3D image. Important cues for depth perception, such as binocular parallax, accommodation, convergence and motion parallax are satisfied automatically and naturally, thus it is suitable for individual or group viewing, without the need for any special visual aids.

  • PDF

New Image Mapping Algorithm for 3D Integral Imaging Display System used in Virtual Reality

  • Suk, Myung-Hoon;Min, Sung-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.41-45
    • /
    • 2005
  • A new algorithm of the image mapping which is a technique of the elemental image generation is proposed. The proposed method is based on the characteristics of the lens array such as the number, the size and the focal length of the elemental lens. The 3D image generated by 3D graphic API such as OpenGL can be directly adopted without the complex adaptation. Since the image mapping using the proposed method can enhance the speed of the elemental image generation, the computer- generated integral imaging system can be applied to virtual reality system.

  • PDF

3D Display System and Application with Optical Correction

  • Kawai, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.111-116
    • /
    • 2005
  • This paper describes work by the authors aimed at reducing the mismatch between accommodation and convergence when viewing stereoscopic 3D images. Two methodologies, one a simple system with a mono-focal lens and the other a dynamic system using a moving LCD, were introduced as experimental 3D displays with optical correction. The results of usage evaluations suggest improvements in health and amenity can be achieved with stereoscopic representation with accommodation.

  • PDF

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

Depth-fused-type Three-dimensional Near-eye Display Using a Birefringent Lens Set

  • Baek, Hogil;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.524-529
    • /
    • 2020
  • We propose a depth-fused-type three-dimensional (3D) near-eye display implemented using a birefringent lens set that is made of calcite. By using a birefringent lens and image source (28.70 mm × 21.52 mm), which has different focal lengths according to the polarization state of the incident light, the proposed system can present depth-fused three-dimensional images at 4.6 degrees of field of view (FOV) within 1.6 Diopter (D) to 0.4 D, depending on the polarization distributed depth map. The proposed method can be applied to near-eye displays like head-mounted display systems, for a more natural 3D image without vergence-accommodation conflict.

Non-glasses Stereoscopic 3D Floating Hologram System using Polarization Technique

  • Choi, Pyeongho;Choi, Yoonhee;Park, Misoo;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • The image projected onto the screen of the floating hologram is no more than a two-dimensional image. Although it creates an illusion that an object appears to float in space as it moves around while showing its different parts. This paper has proposed a novel method of floating 3D hologram display to view stereoscopic three-dimensional images without putting on glasses. The system is comprised of a sharkstooth scrim screen, projector, polarizing filter for the projector, and a polarizing film to block the image projected from the sham screen. As part of the polarization characteristics, the background image and the front object have completely been separated from each other with the stereoscopic 3D effect successfully implemented by the binocular disparity caused by the distance between the two screens.

470 x 235ppi poly-Si TFT LCD for High-Resolution 2D and 3D Autostereoscopic Display

  • Uehara, Shin-Ichi;Ikeda, Naoyasu;Takanashi, Nobuaki;Iriguchi, Masao;Sugimoto, Mitsuhiro;Matsuzaki, Tadahiro;Asada, Hideki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.783-786
    • /
    • 2004
  • We have developed a 470 x 235ppi poly-Si TFT LCD with a novel pixel arrangement, called HDDP (Horizontally Double-Density Pixels), for high-resolution 2D and 3D autostereoscopic display. 3D image quality is especially high in a lenticular-lens-equipped 3D mode because both horizontal resolution and vertical resolution are high, and because these resolutions are equal. 3D and 2D images can be displayed simultaneously in the same picture. In addition, 3D images can be displayed anywhere and 2D characters can be made to appear at different depths with perfect legibility. No switching of 2D/3D modes is necessary, and the design's thin and uncomplicated structure makes it especially suitable for mobile terminals.

  • PDF