• 제목/요약/키워드: 3D data reconstruction

검색결과 351건 처리시간 0.036초

Comparative study of data selection in data integration for 3D building reconstruction

  • Nakagawa, Masafumi;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1393-1395
    • /
    • 2003
  • In this research, we presented a data integration, which integrates ultra high resolution images and complementary data for 3D building reconstruction. In our method, as the ultra high resolution image, Three Line Sensor (TLS) images are used in combination with 2D digital maps, DSMs and both of them. Reconstructed 3D buildings, correctness rate and the accuracy of results were presented. As a result, optimized combination scheme of data sets , sensors and methods was proposed.

  • PDF

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Survey on 3D Surface Reconstruction

  • Khatamian, Alireza;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.338-357
    • /
    • 2016
  • The recent advent of increasingly affordable and powerful 3D scanning devices capable of capturing high resolution range data about real-world objects and environments has fueled research into effective 3D surface reconstruction techniques for rendering the raw point cloud data produced by many of these devices into a form that would make it usable in a variety of application domains. This paper, therefore, provides an overview of the existing literature on surface reconstruction from 3D point clouds. It explains some of the basic surface reconstruction concepts, describes the various factors used to evaluate surface reconstruction methods, highlights some commonly encountered issues in dealing with the raw 3D point cloud data and delineates the tradeoffs between data resolution/accuracy and processing speed. It also categorizes the various techniques for this task and briefly analyzes their empirical evaluation results demarcating their advantages and disadvantages. The paper concludes with a cross-comparison of methods which have been evaluated on the same benchmark data sets along with a discussion of the overall trends reported in the literature. The objective is to provide an overview of the state of the art on surface reconstruction from point cloud data in order to facilitate and inspire further research in this area.

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

삼차원 재구성을 위한 Data-Flow 기반의 프레임워크 (A data-flow oriented framework for video-based 3D reconstruction)

  • 김희관
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.71-74
    • /
    • 2009
  • The data-flow paradigm has been employed in various application areas. It is particularly useful where large data-streams must be processed, for example in video and audio processing, or for scientific visualization. A video-based 3D reconstruction system should process multiple synchronized video streams. The system exhibits many properties that can be targeted using a data-flow approach that is naturally divided into a sequence of processing tasks. In this paper we introduce our concept to apply the data-flow approach to a multi-video 3D reconstruction system.

An efficent method of binocular data reconstruction

  • Rao, YunBo;Ding, Xianshu;Fan, Bojiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3721-3737
    • /
    • 2015
  • 3D reconstruction based on binocular data is significant to machine vision. In our method, we propose a new and high efficiency 3D reconstruction approach by using a consumer camera aiming to: 1) address the configuration problem of dual camera in the binocular reconstruction system; 2) address stereo matching can hardly be done well problem in both time computing and precision. The kernel feature is firstly proposed in calibration stage to rectify the epipolar. Then, we segment the objects in the camera into background and foreground, for which system obtains the disparity by different method: local window matching and kernel feature-based matching. Extensive experiments demonstrate our proposed algorithm represents accurate 3D model.

Reconstruction of Buildings from Satellite Image and LIDAR Data

  • Guo, T.;Yasuoka, Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.519-521
    • /
    • 2003
  • Within the paper an approach for the automatic extraction and reconstruction of buildings in urban built-up areas base on fusion of high-resolution satellite image and LIDAR data is presented. The presented data fusion scheme is essentially motivated by the fact that image and range data are quite complementary. Raised urban objects are first segmented from the terrain surface in the LIDAR data by making use of the spectral signature derived from satellite image, afterwards building potential regions are initially detected in a hierarchical scheme. A novel 3D building reconstruction model is also presented based on the assumption that most buildings can be approximately decomposed into polyhedral patches. With the constraints of presented building model, 3D edges are used to generate the hypothesis and follow the verification processes and a subsequent logical processing of the primitive geometric patches leads to 3D reconstruction of buildings with good details of shape. The approach is applied on the test sites and shows a good performance, an evaluation is described as well in the paper.

  • PDF

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향 (Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction)

  • 김승룡
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-78
    • /
    • 2021
  • 2차원 단일 영상에서 3차원 깊이 정보를 복원하는 기술은 다양한 한계 및 산업계에서 활용도가 매우 높은 기술임이 분명하다. 하지만 2차원 영상은 임의의 3차원 정보의 투사의 결과라는 점에서 내재적 깊이 모호성(Depth ambiguity)을 가지고 있고 이를 해결하는 문제는 매우 도전적이다. 이러한 한계점은 최근 인공지능 기술의 발달에 힘입어 2차원 영상과 3차원 깊이 정보간의 대응 관계를 학습하는 알고리즘의 발달로 극복되어 지고 있다. 이러한 3차원 깊이 정보 획득을 위한 인공지능 기술을 학습하기 위해서는 대응 관계를 나타내는 대규모의 학습데이터의 필요성이 절대적인데, 이러한 데이터는 취득 및 가공 과정에서 상당한 노동력을 필요로 하기에 제한적으로 구축이 가능하다. 따라서 최근의 기술 발전 동향은 대규모의 2차원 영상과 메타 데이터를 활용하여 3차원 깊이 정보를 예측하려는 약교사(Weakly-supervised) 인공지능 기술의 발전이 주를 이루고 있다. 본 고에서는 이러한 기술 발전 동향을 장면(Scene) 3차원 복원 기술과 객체(Object) 3차원 복원 기술로 나누어 요약하고 현재의 기술들의 한계점과 향후 나아갈 방향에 대해서 토의한다.

3차원 복원을 위한 구조적 조명 보정방법 (Hard calibration of a structured light for the Euclidian reconstruction)

  • 신동조;양성우;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF