• Title/Summary/Keyword: 3D data model

Search Result 2,984, Processing Time 0.032 seconds

3D Spatial Image City Models Generation and Applications for Ubiquitous-City (u-city를 위한 3차원 공간 영상 도시 모델 생성 및 적용 방안)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, urban planing, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system based on the 2-D digital maps and contour lines has limitation in implementation in reproducing the 3-D spatial city. Currently, the LiDAR data which combines the laser and GPS skill has been introduced to obtain high resolution accuracy in the altitude measurement in the advanced country. In this paper, we first introduce the LiDAR based researches in advanced foreign countries, then we propose the data generation scheme and an solution algorithm for the optimal management of our 3-D spatial u-City construction. For this purpose, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional model with long distance for 3D u-city model generation.

  • PDF

Multi-view Semi-supervised Learning-based 3D Human Pose Estimation (다시점 준지도 학습 기반 3차원 휴먼 자세 추정)

  • Kim, Do Yeop;Chang, Ju Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.174-184
    • /
    • 2022
  • 3D human pose estimation models can be classified into a multi-view model and a single-view model. In general, the multi-view model shows superior pose estimation performance compared to the single-view model. In the case of the single-view model, the improvement of the 3D pose estimation performance requires a large amount of training data. However, it is not easy to obtain annotations for training 3D pose estimation models. To address this problem, we propose a method to generate pseudo ground-truths of multi-view human pose data from a multi-view model and exploit the resultant pseudo ground-truths to train a single-view model. In addition, we propose a multi-view consistency loss function that considers the consistency of poses estimated from multi-view images, showing that the proposed loss helps the effective training of single-view models. Experiments using Human3.6M and MPI-INF-3DHP datasets show that the proposed method is effective for training single-view 3D human pose estimation models.

Emotion Classification DNN Model for Virtual Reality based 3D Space (가상현실 기반 3차원 공간에 대한 감정분류 딥러닝 모델)

  • Myung, Jee-Yeon;Jun, Han-Jong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.4
    • /
    • pp.41-49
    • /
    • 2020
  • The purpose of this study was to investigate the use of the Deep Neural Networks(DNN) model to classify user's emotions, in particular Electroencephalography(EEG) toward Virtual-Reality(VR) based 3D design alternatives. Four different types of VR Space were constructed to measure a user's emotion and EEG was measured for each stimulus. In addition to the quantitative evaluation based on EEG data, a questionnaire was conducted to qualitatively check whether there is a difference between VR stimuli. As a result, there is a significant difference between plan types according to the normalized ranking method. Therefore, the value of the subjective questionnaire was used as labeling data and collected EEG data was used for a feature value in the DNN model. Google TensorFlow was used to build and train the model. The accuracy of the developed model was 98.9%, which is higher than in previous studies. This indicates that there is a possibility of VR and Fast Fourier Transform(FFT) processing would affect the accuracy of the model, which means that it is possible to classify a user's emotions toward VR based 3D design alternatives by measuring the EEG with this model.

Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-tracing

  • Yoon, Dong Hyeon;Song, Jung Heon;Koh, June Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Since it was first studied in 1980, solar energy analysis model for geographic information systems has been used to determine the approximate spatial distribution of terrain. However, the spatial pattern was not able to be grasped in 3D (three-dimensional) space with low accuracy due to the limitation of input data. Because of computational efficiency, using a constant value for the brightness of the sky caused the simulation results to be less reliable especially when the slope is high or buildings are crowded around. For the above reasons, this study proposed a model that predicts solar energy of vertical surfaces of buildings with four stages below. Firstly, CIE (Commission Internationale de l'Eclairage) luminance distribution model was used to calculate the brightness distribution of the sky using NREL (National Renewable Energy Laboratory) solar tracking algorithm. Secondly, we suggested a method of calculating the shadow effect using ray tracing. Thirdly, LOD (Level of Detail) 3 of 3D spatial data was used as input data for analysis. Lastly, the accuracy was evaluated based on the atmospheric radiation data collected through the ground observation equipment in Daejeon, South Korea. As a result of evaluating the accuracy, NMBE was 5.14%, RMSE 11.12, and CVRMSE 7.09%.

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Construction of 3D Geometric Surface Model from Laminated CT Images for the Pubis (치골 부위의 CT 적층 영상을 활용한 3D 기하학적 곡면 모델로의 가공)

  • Hwang, Ho-Jin;Mun, Du-Hwan;Hwang, Jin-Sang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.234-242
    • /
    • 2010
  • 3D CAD technology has been extended to a medical area including dental clinic beyond industrial design. The 2D images obtained by CT(Computerized Tomography) and MRI(Magnetic Resonance Imaging) are not intuitive, and thus the volume rendering technique, which transforms 2D data into 3D anatomic information, has been in practical use. This paper has focused on a method and its implementation for forming 3D geometric surface model from laminated CT images of the pubis. The implemented system could support a dental clinic to observe and examine the status of a patient's pubis before implant surgery. The supplement of 3D implant model would help dental surgeons settle operation plans more safely and confidently. It also would be utilized with teaching materials for a practice and training.

A study on pattern and 3D restoration of Chinese traditional women's robe, straight Ju(直裾深衣) (중국 전통 귀족 여성 예복인 직거심의(直裾深衣)의 패턴 및 3D 복원 연구)

  • Sun Yuan;Jihyeon Kim;Mi-hyang Na
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.107-122
    • /
    • 2023
  • This study analyzed the style, dimensions, fabric patterns, colors, and fabrics of a traditional Chinese women's dress from the Zhou Dynasty, and reconstructed it in the form of a virtual garment using 3D CLO. Based on ancient flat image data and three-dimensional portrait data, who wore them, how they were worn, and how they were coordinated was analyzed. In order to analyze the size and pattern of the straight Ju Chines dress, data from the excavation report and the tomb owner's anthropometric measurements were combined to infer the wearing condition and organize the sculptural features. Dimensional analysis was carried out using a well-preserved small-scale woven cotton cloth as a restoration model, and the horizontal and vertical dimensions were reasonably estimated using the shape proportioning method. The analysis of the colors and patterns of the fabrics was based on the colors and patterns of the fabrics excavated from Masan Tomb No. 1 during the Eastern Zhou, Qin, and Han periods. Finally, a virtual model was created using data from the excavation report and the age and height information of the owner of the excavated robe, and the pose and size of the virtual model were determined using 3D CLO. Based on the previous research data, the garment was virtually sewn and simulated. The shape, pressure, and strain of the garment in different postures was also compared. Through the research direction of pattern and 3D restoration, this research maximizes the restoration of Chinese traditional women's dress and presents it in a more intuitive, comprehensive, and vivid way.

Generation of 3D Building Model Using Estimation of Rooftop Surface (Rooftop 평면 추정에 의한 3차원 건물 모델 발생)

  • Kang, Yon-Uk;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2921-2923
    • /
    • 2005
  • This paper presents to generate 3D building model using estimation of rooftop surface after 3D line segment extraction using hybrid stereo matching techniques in terms of the co-operation of area-based stereo and feature-based stereo. we first performed a junction extraction from 3D line segment data which was obtained by stereo images, and finally generated building's reliable rooftop surface model using LSE(Least Square Error) method after creating surfaces by grouped and fixed junction points. we generated synthetic images for experimentation by photo-realistic simulation on Avenches data set of Ascona aerial images.

  • PDF

Developing and Valuating 3D Building Models Based on Multi Sensor Data (LiDAR, Digital Image and Digital Map) (멀티센서 데이터를 이용한 건물의 3차원 모델링 기법 개발 및 평가)

  • Wie, Gwang-Jae;Kim, Eun-Young;Yun, Hong-Sic;Kang, In-Gu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2007
  • Modeling 3D buildings is an essential process to revive the real world into a computer. There are two ways to create a 3D building model. The first method is to use the building layer of 1:1000 digital maps based on high density point data gained from airborne laser surveying. The second method is to use LiDAR point data with digital images achieved with LiDAR. In this research we tested one sheet area of 1:1000 digital map with both methods to process a 3D building model. We have developed a process, analyzed quantitatively and evaluated the efficiency, accuracy, and reality. The resulted differed depending on the buildings shape. The first method was effective on simple buildings, and the second method was effective on complicated buildings. Also, we evaluated the accuracy of the produced model. Comparing the 3D building based on LiDAR data and digital image with digital maps, the horizontal accuracy was within ${\pm}50cm$. From the above we derived a conclusion that 3D building modeling is more effective when it is based on LiDAR data and digital maps. Using produced 3D building modeling data, we will be utilized as digital contents in various fields like 3D GIS, U-City, telematics, navigation, virtual reality and games etc.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.