• Title/Summary/Keyword: 3D data analysis

Search Result 4,192, Processing Time 0.035 seconds

An Hardware Error Analysis of 3D Automatic Face Recognition Apparatus(3D-AFRA) : Surface Reconstruction (3차원 안면자동인식기(3D-AFRA)의 Hardware 정밀도 검사 : 형상복원 오차분석)

  • Seok, Jae-Hwa;Song, Jung-Hoon;Kim, Hyun-Jin;Yoo, Jung-Hee;Kwak, Chang-Kyu;Lee, Jun-Hee;Kho, Byung-Hee;Kim, Jong-Won;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.30-39
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Constitution. We are developing 3D Automatic Face Recognition Apparatus(3D-AFRA) to analyse the facial characteristics. This apparatus show us 3D image and data of man's face and measure facial figure data. So we should examine the figure restoration error of 3D Automatic Fare Recognition Apparatus(3D-AFRA) in hardware Error Analysis. 2. Methods We scanned Face status by using 3D Automatic Face Recognition Apparatus(3D-AFRA). And also we scanned Face status by using laser scanner(vivid 9i). We compared facial shape data be restored by 3D Automatic Face Recognition Apparatus(3D-AFRA) with facial shape data that be restorated by 3D laser scanner. And we analysed the average error and the maximum error of two data. 3. Results and Conclusions In frontal face, the average error was 0.48mm. and the maximum error was 4.60mm. In whole face, the average error of was 0.99mm. And the maximum error was 6.64mm. In conclusion, We assessed that accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good.

  • PDF

Neutronics analysis of TRIGA Mark II research reactor

  • Rehman, Haseebur;Ahmad, Siraj-ul-Islam
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics) Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4) and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE) codes. Cores 133 and 134 were analyzed in 2-D (r, ${\theta}$) and 3-D (r, ${\theta}$, z), using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0), Joint Evaluated Fission and Fusion File (JEFF-3.1), Japanese Evaluated Nuclear Data Library (JENDL-3.2), and Joint Evaluated File (JEF-2.2) nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

Sharing Ship Design Model Based on STEP methodology (STEP 방법론을 이용한 선박설계 모델의 공유)

  • Yong-Jae Shin;Soon-Hung Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.98-108
    • /
    • 1998
  • Hull design data is currently prepared by a 2D CAD system and re-input to 3D CAD systems specialized for detail design or to a structural analysis system. In this paper, sharing design data among different CAD systems has been studied. Based on STEP methodology, a neutral model is generated from 2D AutoCAD drawings. To handle a geometric data of this model, the non-manifold model of ACIS is used because it can support various CAD data representation such as 2D graphic entities, 3D wireframe, 3D surface model, and solid B-Rep/CSG model. It is observed that a mon-manifold model can easily be transformed to a 3-D wireframe model for the hull detail design system AutoDef or a FE model for the structural analysis system Nastran.

  • PDF

An Accuracy Analysis of the 3D Automatic Body Measuring Machine (3차원 자동체형계측기 정밀도 검사)

  • Jeon, Soo-Hyung;Kwon, Suk-Dong;Park, Se-Jung;Kim, Jung-Yang;Song, Jung-Hoon;Kim, Hyun-Jin;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • 1. Objectives The Body Shape and Feature is one of the important standard for classification of Sasang Constitutions. In order to evaluate one's Body Shape and Feature objectively we have been developing the Body Measuring Machine. Now we develop the 3D Automatic Body Measuring Machine(3D-ABMM). So we make an analysis of the 3D-ABMM's Accuracy. 2. Methods By using the 3D-ABMM and Vivid 9i(3D laser scanner, Konica Minolta) we have a surface scan of the three objects which are the upper body of the female and male Manikin and a male model. We overlap each scan data using the RapidForm2006 (3D scan data solution, INUS Technology) and calculate the average distance and standard deviation between the same point of each scan data. 3. Results and Conclusions In the female Manikin, the average distance is 0.84mm and the standard deviation is 1.16mm and the maximum distance is 10.68mm. In the male Manikin, the average distance is 1.12mm and the standard deviation is 1.19mm and the maximum distance is 12.00mm. In the male model, the average distance is 3.26mm and the standard deviation is 2.59mm and the maximum distance is 12.75mm. From the results, 3D-ABMM has good accuracy for scanning body and will be a usable hardware of the 3D Automatic Body Analysis Machine.

  • PDF

A Study on the Body Shape Analysis for an Avatar Generation of the Virtual Fitting System -Focusing on Korean Women in their 20's-

  • Jang, Heekyung;Chen, Jianhui
    • Journal of Fashion Business
    • /
    • v.22 no.3
    • /
    • pp.122-142
    • /
    • 2018
  • In the virtual fitting system, the use of a 3D avatar is not a simple garment model, but it should be able to reproduce the size and shape of the customer using a fitting system. Although various virtual fitting systems have their own 3D avatar sizing systems and provide 3D avatars that match the size of the customer, there are limitations in realizing the actual body shape in actual use by the consumer. The purpose of this study is to realize a 3D avatar with excellent size and conformity for customer use. Therefore, this study aims to provide basic data for the formation of a 3D standard avatar of Korean women aged in their 20's, by comparing and analyzing the degree of the consumer user friendly system change of a body type, and the consumer's ability in selecting a consumer representative body type. Based on the survey data of 'Size Korea' conducted from 2004 to 2015 at three times, we examined the change of body shape over 10 years. Then, based on the results of 6th and 7th data, 4 factors of the concurrent body shape change of women of the consumer demographic studied were selected through the use of a factor analysis. Following this analysis, the 4 extracted factors were clustered again and finally released 7 representative body types, which were obtained based on height and weight. The size of each representative figure is derived by the use of a regression analysis, and it is used as a basic data for 3D avatar formation of the virtual fitting system.

Transformations and Their Analysis from a RGBD Image to Elemental Image Array for 3D Integral Imaging and Coding

  • Yoo, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2273-2286
    • /
    • 2018
  • This paper describes transformations between elemental image arrays and a RGBD image for three-dimensional integral imaging and transmitting systems. Two transformations are introduced and analyzed in the proposed method. Normally, a RGBD image is utilized in efficient 3D data transmission although 3D imaging and display is restricted. Thus, a pixel-to-pixel mapping is required to obtain an elemental image array from a RGBD image. However, transformations and their analysis have little attention in computational integral imaging and transmission. Thus, in this paper, we introduce two different mapping methods that are called as the forward and backward mapping methods. Also, two mappings are analyzed and compared in terms of complexity and visual quality. In addition, a special condition, named as the hole-free condition in this paper, is proposed to understand the methods analytically. To verify our analysis, we carry out experiments for test images and the results indicate that the proposed methods and their analysis work in terms of the computational cost and visual quality.

3D Adjacency Spatial Query using 3D Topological Network Data Model (3차원 네트워크 기반 위상학적 데이터 모델을 이용한 3차원 인접성 공간질의)

  • Lee, Seok-Ho;Park, Se-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.93-105
    • /
    • 2010
  • Spatial neighborhoods are spaces which are relate to target space. A 3D spatial query which is a function for searching spatial neighborhoods is a significant function in spatial analysis. Various methodologies have been proposed in related these studies, this study suggests an adjacent based methodology. The methodology of this paper implements topological data for represent a adjacency via using network based topological data model, then apply modifiable Dijkstra's algorithm to each topological data. Results of ordering analysis about an adjacent space from a target space were visualized and considered ways to take advantage of. Object of this paper is to implement a 3D spatial query for searching a target space with a adjacent relationship in 3D space. And purposes of this study are to 1)generate adjacency based 3D network data via network based topological data model and to 2)implement a 3D spatial query for searching spatial neighborhoods by applying Dijkstra's algorithms to these data.

Firework plot as a graphical exploratory data analysis tool for evaluating the impact of outliers in skewness and kurtosis of univariate data (일변량 자료의 왜도와 첨도에서 특이점의 영향을 평가하기 위한 탐색적 자료분석 그림도구로서의 불꽃그림)

  • Moon, Sungho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.355-368
    • /
    • 2016
  • Outliers and influential data points distort many data analysis measures. Jang and Anderson-Cook (2014) proposed a graphical method called a rework plot for exploratory analysis purpose so that there could be a possible visualization of the trace of the impact of the possible outlying and/or influential data points on the univariate/bivariate data analysis and regression. They developed 3-D plot as well as pairwise plot for the appropriate measures of interest. This paper further extends their approach to identify its strength. We can use rework plots as a graphical exploratory data analysis tool to evaluate the impact of outliers in skewness and kurtosis of univariate data.

Application of Geographic Information System for Synthetic Analysis of Multidisciplinary Data in Seawater Intrusion Assessment (해수침투 조사자료의 통합적 해석을 위한 GIS의 적용)

  • Choi Sun-Young;Hwang Seho;Park Kwon Gyu;Shin Je-Hyun;Yoon Wang-Jung
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • In order to effectively, and accurately assess seawater intrusion in coastal area, multidisciplinary data including geophysical, well logging, and hydrogeochemical data should be managed in systematical way. Such systematical management of data is critical key to improve the re-usability of the data as well as the accuracy of the assessment by means of providing a method of synthetic analysis. Therefore, for systematical management of multidisciplinary data in seawater intrusion problem, we have developed a database management system and 3-D visualization interface based on geographic information system in this, study. All geophysical survey, well logging, hydrochemical, as well as drilling, data are classified as attribute data using Microsoft Access, and joined with spatial information based on ArcView. The database management system and 3-D visualization interface to handle these data, also, developed using the script language of ArcView. We think the development of database and 3-D visualization system will improve the efficiency of data management, user-friendliness of data access, and accuracy of data analysis.

  • PDF

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.