• Title/Summary/Keyword: 3D computed tomography

Search Result 583, Processing Time 0.025 seconds

Computed tomography-guided 3D printed patient-specific regional anesthesia

  • Jundt, Jonathon S.;Chow, Christopher C.;Couey, Marcus
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.5
    • /
    • pp.325-329
    • /
    • 2020
  • Classic anesthetic techniques for the inferior alveolar nerve, lingual nerve, and long buccal nerve blockade are achieved by estimating the intended location for anesthetic deposition based on palpation, inspection, and subsequent correlation for oral anatomical structures. The present article utilizes computed tomography (CT) data to 3D print a guide for repeatable and accurate deposition of a local anesthetic at the ideal location. This technical report aims to anatomically define the ideal location for local anesthetic deposition. This process has the potential to reduce patient discomfort, risk of nerve damage, and failed mandibular anesthesia, as well as to reduce the total anesthetic dose. Lastly, as robotic-based interventions improve, this provides the initial framework for robot-guided regional anesthesia administration in the oral cavity.

ANATOMICAL ASSESSMENT OF ACCESSORY MENTAL FORAMEN USING 3D CONE BEAM COMPUTED TOMOGRAPHY IN KOREAN (한국인에서 3차원 conebeam CT를 이용한 부이공의 해부학적인 평가)

  • Keum, Ki-Chun;Oh, Sung-Hwan;Min, Seung-Ki;Lee, Byung-Do;Lee, Jong-Bok;Lee, Dae-Jeong;Paeng, Jun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • Purpose: The mental foramen (MF) is an important anatomical structure during local anesthesia and surgical procedures in terms of achieving effective mental nerve blocks and avoiding injuries to the neurovascular bundles. Thus, understanding the anatomic features of the mandibular canal and accessory mental foramen in Korean could contribute to the surgical anatomic assessment. This study was to elucidate frequency, position and course of AMF (accessory mental foramen) in Korean using 3D cone beam computed tomography. Materials and Methods: The CBCT (Conbeam computed tomography) DICOM data (Alphard, Asahi, Japan) from 540 patients in korean were analyzed. We investigated images of 3D CBCT using Ondemand (CyberMed, Korea) software program on the incidence and anatomical characteristics of accessory foramen. Results: The accessory mental foramina were found in 17 patients. Accessory mental foramina exist predominantly in the apical area of the second premolar and posteroinferior area of the mental foramen. The accessory branches of the mandibular canal showed common characteristics in the course of gently sloping posterosuperior direction in the buccal surface area. The size of most AMF was obviously smaller than that of MF. Conclusion: We could identify frequency, position and course of AMF (accessory mental foramen) by the anatomical study of the accessory mental foramen using 3D cone beam CT in Korean.

3D Modeling of Cerebral Hemorrhage using Gradient Vector Flow (기울기 벡터 플로우를 이용한 뇌출혈의 3차원 모델링)

  • Seok-Yoon Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.231-237
    • /
    • 2024
  • Brain injury causes persistent disability in survivors, and epidural hematoma(EDH) and subdural hematoma (SDH) resulting from cerebral hemorrhage can be considered one of the major clinical diseases. In this study, we attempted to automatically segment and hematomas due to cerebral hemorrhage in three dimensions based on computed tomography(CT) images. An improved GVF(gradient vector flow) algorithm was implemented for automatic segmentation of hematoma. After calculating and repeating the gradient vector from the image, automatic segmentation was performed and a 3D model was created using the segmentation coordinates. As a result of the experiment, accurate segmentation of the boundaries of the hematoma was successful. The results were found to be good even in border areas and thin hematoma areas, and the intensity, direction of spread, and area of the hematoma could be known in various directions through the 3D model. It is believed that the planar information and 3D model of the cerebral hemorrhage area developed in this study can be used as auxiliary diagnostic data for medical staff.

Intraoral scanning of the edentulous jaw without additional markers: An in vivo validation study on scanning precision and registration of an intraoral scan with a cone-beam computed tomography scan

  • Julie Tilly Deferm;Frank Baan;Johan Nijsink;Luc Verhamme;Thomas Maal;Gert Meijer
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Purpose: A fully digital approach to oral prosthodontic rehabilitation requires the possibility of combining (i.e., registering) digital documentation from different sources. This becomes more complex in an edentulous jaw, as fixed dental markers to perform reliable registration are lacking. This validation study aimed to evaluate the reproducibility of 1) intraoral scanning and 2) soft tissue-based registration of an intraoral scan with a cone-beam computed tomography (CBCT) scan for a fully edentulous upper jaw. Materials and Methods: Two observers independently performed intraoral scans of the upper jaw in 14 fully edentulous patients. The palatal vault of both surface models was aligned, and the inter-observer variability was assessed by calculating the mean inter-surface distance at the level of the alveolar crest. Additionally, a CBCT scan of all patients was obtained and a soft tissue surface model was generated using patient-specific gray values. This CBCT soft tissue model was registered with the intraoral scans of both observers, and the intraclass correlation coefficient(ICC) was calculated to evaluate the reproducibility of the registration method. Results: The mean inter-observer deviation when performing an intraoral scan of the fully edentulous upper jaw was 0.10±0.09 mm. The inter-observer agreement for the soft tissue-based registration method was excellent(ICC=0.94; 95% confidence interval, 0.81-0.98). Conclusion: Even when teeth are lacking, intraoral scanning of the jaw and soft tissue-based registration of an intraoral scan with a CBCT scan can be performed with a high degree of precision.

Importance of 3-dimensional imaging in the early diagnosis of chondroblastic osteosarcoma

  • Laura Althea Cuschieri;Rebecca Schembri-Higgans;Nicholas Bezzina;Alexandra Betts;Arthur Rodriguez Gonzalez Cortes
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.247-256
    • /
    • 2023
  • The aim of this report is to present a case of chondroblastic osteosarcoma located in the right maxillary premolar region of a 17-year-old female patient. The initial clinical presentation and 2-dimensional (2D) radiographic methods proved inadequate for a definitive diagnosis. However, a cone-beam computed tomography scan revealed a hyperdense, heterogeneous lesion in the right maxillary premolar region, exhibiting a characteristic "sun-ray" appearance. To assess soft tissue involvement, a medical computed tomography scan was subsequently conducted. A positron emission tomography scan detected no metastasis or indications of secondary tumors. T1- and T2-weighted magnetic resonance imaging showed signal heterogeneity within the lesion, including areas of low signal intensity at the periphery. Histological examination conducted after an incisional biopsy confirmed the diagnosis of highgrade chondroblastic osteosarcoma. The patient was then referred to an oncology department for chemotherapy before surgery. In conclusion, these findings suggest that early diagnosis using 3-dimensional imaging can detect chondroblastic osteosarcoma in its early stages, such as before metastasis occurs, thereby improving the patient's prognosis.

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

Comparison of limited- and large-volume cone-beam computed tomography using a small voxel size for detecting isthmuses in mandibular molars

  • de Souza Tolentino, Elen;Andres Amoroso-Silva, Pablo;Alcalde, Murilo Priori;Yamashita, Fernanda Chiguti;Iwaki, Lilian Cristina Vessoni;Rubira-Bullen, Izabel Regina Fischer;Duarte, Marco Antonio Hungaro
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • Purpose: This study was performed to compare the ability of limited- and large-volume cone-beam computed tomography (CBCT) to display isthmuses in the apical root canals of mandibular molars. Materials and Methods: Forty human mandibular first molars with isthmuses in the apical 3 mm of mesial roots were scanned by micro-computed tomography (micro-CT), and their thickness, area, and length were recorded. The samples were examined using 2 CBCT systems, using the smallest voxels and field of view available for each device. The Mann-Whitney, Friedman, and Dunn multiple comparison tests were performed (α=0.05). Results: The 3D Accuitomo 170 and i-Cat devices detected 77.5% and 75.0% of isthmuses, respectively (P>0.05). For length measurements, there were significant differences between micro-CT and both 3D Accuitomo 170 and i-Cat(P<0.05). Conclusion: Both CBCT systems performed similarly and did not detect isthmuses in the apical third in some cases. CBCT still does not equal the performance of micro-CT in isthmus detection, but it is nonetheless a valuable tool in endodontic practice.

Analysis of Secondary Battery Based on Image Processing of Computed Tomography (CT 기반 영상처리를 이용한 이차전지의 분석)

  • Jea-Seok Oh;Sang-Yeol Lee;Yoon-Gi Yang;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.13-21
    • /
    • 2022
  • In this study, we presented a method to inspect the mechanical defects of 4680 type lithium-ion batteries through image processing method. The raw X-ray images are filtered with CLAHE, then Radon inverse transformations are calculated to reconstruct 3D computed tomography of the battery. Using Haar-cascade, the ROI is targeted automatically, and the template matchings are applied twice. The variations of contrast between template and background show the appropriate values for detecting tabs. It was shown that the proposed algorithm can detect all the tab inside the battery and the distances between tabs. Finally, we successfully found the geometrical defects of battery.

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

QUANTITATIVE ASSESSMENT OF NASAL AND UPPER LIP CHANGES AFTER LE FORT I OSTEOTOMY SURGERY USING A 3-DIMENSIONAL COMPUTED TOMOGRAPHY (르포씨 1형 골절단술후 코와 상순의 연조직 변화의 삼차원 컴퓨터 단층촬영을 이용한 정량적 측정에 관한 연구)

  • Lee, Won-Deok;Yoo, Chung-Kyu;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Objective: To evaluate nasal and upper lip changes after Le Fort I surgery by means of images taken with a three-dimensional computed tomography (3D-CT). Methods: Fifteen patients (9 female and 6 male, mean age 21.9 years) with preoperative and postoperative 3D-CT were studied. The patients underwent maxillary movement with impaction or elongation, and advancement or setback. With the 3D-CT which presents reconstructive soft tissue images, preoperative and postoperative measurement and analysis were performed for nasal tip projection angle, columellar angle, supratip break angle, nasolabial angle, interalar width, internostril width, columella length and nasal tip projection. Results: Postoperative interalar and internostril widening was significant for all categories of maxillary movement. However, there was little significant relation in all parameters between the amount and direction of maxillary movement. Interestingly, movement of the maxilla with upward did show a little decrease in the columellar angle, supra tip break angle and nasolabial angle. Also movement of the maxilla with forward did show a little advancement in the upper lip position. Conclusion: Changes to the nose clearly occur after orthognathic surgery. There was a significant increase in postoperative interalar width and internostril width with maxillary movement. However, no clear correlation could be determined between amount of change and maxillary movement. Interestingly, maxillary impaction did show a little decrease in the columellar angle, supra tip break angle and nasolabial angle. In addition, we used 3D-CT for more precise analysis as a useful tool.