• 제목/요약/키워드: 3D code

검색결과 1,374건 처리시간 0.024초

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

DEEP-South: The Photometric Study of Non-Principal Axis Rotator (5247) Krylov

  • Lee, Hee-Jae;Moon, Hong-Kyu;Kim, Myung-Jin;Kim, Chun-Hwey;Durech, Josef;Park, Jintae;Roh, Dong-Goo;Choi, Young-Jun;Yim, Hong-Suh;Oh, Young-Seok
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.49.2-49.2
    • /
    • 2016
  • The number of discovery of asteroids with peculiar rotational states has recently increased, and hence a novel approach for lightcurve analysis is considered to be critical. In order to investigate objects such as Non-Principal Axis (NPA) rotator, we selected a NPA candidate, (5247) Kryolv as our target considering its Principal Axis Rotation (PAR) code and the visibility in early 2016. The observations of Krylov were made using Korea Microlensing Telescope Network (KMTNet) 1.6 m telescopes installed at the three southern sites with TO (Target of Opportunity) observation mode. We conducted R-band time-series photometry over a total of 51 nights from January to April 2016 with several exposures during each allocated run. The ensemble normalization photometry was employed using the AAVSO Photomtric All-Sky Survey (APASS) catalog for the standardization. We successfully confirmed its NPA spin state based on the deviation from the reduced lightcurve, and thus Krylov is recorded as the first NPA rotator of its kind in the main-belt, with its precession and rotation periods, $P{\varphi}=81.18h$ and $P_{\Psi}=67.17h$, respectively. In this paper, we present the spin direction, the 3D shape model and taxonomy of the newly confirmed NPA asteroid (5247) Krylov.

  • PDF

Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발 (Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type)

  • 고대철;이정민;김병민
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

암반조건에 따른 암반-지보 반응거동의 수치해석적 연구 (Rock-support Interaction behavior for Ground Condition based on Numerical Modelling)

  • 전양수;한공창;신중호
    • 터널과지하공간
    • /
    • 제10권3호
    • /
    • pp.403-409
    • /
    • 2000
  • 터널공학에 있어서 지보시스템에 가해지는 최종 하중을 제어하기 위한 지보의 거동에 관한 많은 연구가 실시되었다. 기술적으로 타당한 설계와 안전율이 확보된 경제적인 시공을 위해서는 해석의 신뢰성이 확보되어야 한다. 또한 굴착과 보강의 일련의 시공과정에 대한 역학적인 이해가 필요하며 암반-지보 반응거동에 대한 규명이 이루어져야 한다. 암반과 지보의 거동에 관한 대부분의 연구는 단순화한 가정에 의한 이론적 해석이 주를 이루고 있다. 또한 터널 주위의 암반 조건에 따른 명확한 기준이 없어 터널 설계 시 어려움이 많다 본 연구에서는 유한차분해석 프로그램인 FLAC을 이용하여 암반조건에 따른 해석을 실시하여 암반-지보 반응곡선을 구하였다. 실제 시공과 유사한 조건을 부여하기 위해 암반등급과 측압계수를 달리하여 해석을 실시하였다. 그 결과 암반조건에 다른 암반-지보 반응곡선의 nomogram을 도출하였으며, 이는 설계 초기에 지보압 및 터널의 허용변위에 대한 효율적인 예측을 실시하는데 있어 유용할 것이다.

  • PDF

변형률 속도 효과를 고려한 355nm UV 레이저 다중 펄스 미세가공의 전산해석에 관한 연구 (A Study on the Computational Analysis of 355nm UV Laser Multiple-Pulsed Micro Machining Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;남기중;류광현;신석훈;신보성
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.29-33
    • /
    • 2010
  • UV laser micromachining of metallic materials has been used in microelectronic and other industries. This paper shows on experimental investigation of micromachining of copper using a 355nm UV laser with 50ns pulse duration. A finite element model with high strain rate effect is especially suggested to investigate the phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. In order to consider the strain rate effect, Cowper-Symonds model was used. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, a commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computational simulation of the UV laser micro machining behavior for thin copper material. From these computational results, depth of the dent (from one to six pulsed) were observed and compared with previous experimental results. This will help us to understand interaction between UV laser beam and material.

PLP 를 위한 Fast Algorithm 과 팔레타이징 작업 제어 S/W 를 위한 로봇 시뮬레이터 개발 (Development of Robot Simulator for Palletizing Operation Management S/W and Fast Algorithm for 'PLP')

  • 임성진;강맹규;한창수;송영훈;김성락;한정수;유승남
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.609-616
    • /
    • 2007
  • Palletizing is necessary to promote the efficiency of storage and shipping tasks. These are, however some of the most monotonous, heavy and laborious tasks in the factory. Therefore many types of robot palletizing systems have been developed, but many robot motion commands still depend on the teaching pendent. That is, an operator inputs the motion command lines one by one. It is very troublesome, and most of all, the user must know how to type the code. That is why we propose a new GUI (Graphic User Interface) Palletizing System. To cope with this issue, we proposed a 'PLP' (Pallet Loading Problem) algorithm, Fast Algorithm and realize 3D auto-patterning visualization interface. Finally, we propose the robot palletizing simulator. Internally, the schematic of this simulator is as follows. First, an user inputs the physical information of object. Second, simulator calculates the optimal pattern for the object and visualizes the result. Finally, the calculated position data of object is passed to the robot simulator. To develop the robot simulator, we use an articulated robot, and analyze the kinematics and dynamics. Especially, All problem including thousands of boxes were completely calculated in less than 1 second and resulted in optimal solutions by the Fast Algorithm.

한국 재래돼지 브랜드 돈육 원산지 검증을 위한 유전자 원산지 감식 기법 활용 연구 (Application of DNA Test for Individual Traceability in the Brand Marketing of Korean Native Pig.)

  • 최봉암;이학교;전광주;오재돈;최일신;박미현;공홍식;정일정;김태헌;윤두학;조병욱
    • 한국유기농업학회지
    • /
    • 제12권2호
    • /
    • pp.197-207
    • /
    • 2004
  • Identification of animals has been used with an e ar tag with dummy code and blood typing has been used for paternity and individual identification in live animals. Various genetic markers are different for breeds of pig and hence, it is necessary to identity the discrete genetic marker in korean native pig. A total of 240 pigs were used to find korean native pig population specific markers that expressed in population of korean native pigs. To identify the individual traceability, 20 animals were randomly chosen and tested for a whole process from being live to slaughter stages. The candidate genetic marker used in the study were 18 DNA microsatellites which were identified in pig genome. The number of alleles of those DNA microsatellites ranged form a minimum of 3 to maximum of 6. The heterozygote frequency rang6d from 0.44 to 0.69. Effective number of alleles for each DNA microsatellotes were 2 to 4. By choosing 6 candidate genetic markers among all, the traceability of individual identification was estimated as accurate as 99.99%(p>0.0014), nearly.

  • PDF

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.