• 제목/요약/키워드: 3D chromatin structure

검색결과 13건 처리시간 0.017초

한국산 물윗수염박쥐(Myotis daubentonii ussuriensis)의 정자변태 (Spermiogenesis in the Korean Daubenton's Bat(Myotis daubentonii ussuriensis))

  • 손성원
    • 한국발생생물학회지:발생과생식
    • /
    • 제1권1호
    • /
    • pp.9-24
    • /
    • 1997
  • To investigate the process of spermiogenesis of the Korean eastern Daubenton's bat, Myotis daubentonii ussuriensis, the testis obtained from mature male bats was studied by transmission electron microscope and were based on the variety and diagnostic characters of cell organells. The results obtained from the present study are as follows. According to the differentiation of the cell organells, the spermiogenesis of the Korean eastern Daubenton's bat, M. d. ussuriensis, was divided into Golg, cap, acrosome, maturation and spermiation phases. Besides, these Golgi, cap, acrosome, and maturation phase were subdivided into the steps of early and late phases repectively and matruation phase was subdivided into step of early, mid and late phases. Therfore, the spermiogenesisof M. d. ussuriensis has been divided into a total of 11 phases. The chromatin granules began to condense at the early cap phase, regularized at the acrosome phase, and a perfect nucleus of sperm was formed at the maturation phase. The chromatoid body was occurred in the upper cytoplasm of nucleus at the early Golgi phase, and it was accurred the posterior cytoplasm of the nucleus at the early maturatio phase. The formation of sperm tail began to be develop in the early golgi phase, and completed at the spermiation phase. The fiber structure of middle piece was consisted of nine outer doublets and two central singlet microtubules and Nos. 1, 5, 6 and 9 in the outer dense were larger than the others(2, 3, 4, 7, 8).

  • PDF

Backbone assignment of HMGB1 A-box and molecular interaction with Hoxc9DBD studied by paramagnetic probe

  • Choi, Ji Woong;Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제25권2호
    • /
    • pp.17-23
    • /
    • 2021
  • High mobility group protein B1 (HMGB1) is a highly conserved, non-histone, chromatin associated nuclear protein encoded by HMGB1 gene. HMGB1 proteins may be general co-factors in Hox-mediated transcriptional activation that facilitate the access of Hox proteins to specific DNA targets. It is unclear that the exact binding interface of Hoxc9DBD and HMGB1. To identify the interface and binding affinity of Hoxc9DBD and HMGB1 A-box, the paramagnetic probe, MTSL was used in NMR titration experiment. It is attached to the N-terminal end of HMGB1 A-box by reaction with thiol groups. The backbone assignment of HMGB1 A-box was achieved with 3D NMR techinques. The 15N-labeled HMGB1 A-box was titrated with MTSL-labeled Hoxc9DBD respectively. Based on the chemical shift changes we can identify the interacting residues and further map out the binding sites on the protein structure. The NMR titration result showed that the binding interface of HMGB1 A-box is around loop-1 between helix-1 and helix-2. In addition, the additional contacts were found in N- and C-terminus. The N-terminal arm region of Hoxc9DBD is the major binding region and the loop between helix1 and helix2 is the minor binding region.

From genome sequencing to the discovery of potential biomarkers in liver disease

  • Oh, Sumin;Jo, Yeeun;Jung, Sungju;Yoon, Sumin;Yoo, Kyung Hyun
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.299-310
    • /
    • 2020
  • Chronic liver disease progresses through several stages, fatty liver, steatohepatitis, cirrhosis, and eventually, it leads to hepatocellular carcinoma (HCC) over a long period of time. Since a large proportion of patients with HCC are accompanied by cirrhosis, it is considered to be an important factor in the diagnosis of liver cancer. This is because cirrhosis leads to an irreversible harmful effect, but the early stages of chronic liver disease could be reversed to a healthy state. Therefore, the discovery of biomarkers that could identify the early stages of chronic liver disease is important to prevent serious liver damage. Biomarker discovery at liver cancer and cirrhosis has enhanced the development of sequencing technology. Next generation sequencing (NGS) is one of the representative technical innovations in the biological field in the recent decades and it is the most important thing to design for research on what type of sequencing methods are suitable and how to handle the analysis steps for data integration. In this review, we comprehensively summarized NGS techniques for identifying genome, transcriptome, DNA methylome and 3D/4D chromatin structure, and introduced framework of processing data set and integrating multi-omics data for uncovering biomarkers.