• Title/Summary/Keyword: 3D catalyst

Search Result 276, Processing Time 0.028 seconds

촉매제에 의한 연탄깨스 제거에 관한 연구

  • Heo, Jin
    • Journal of the Korean Professional Engineers Association
    • /
    • v.5 no.19
    • /
    • pp.3-16
    • /
    • 1972
  • 1. Purposes and importances of the study. In gaining heating resources by combustion of briquette, which is the necessaries of every day's life, victims occur from poisonous affection of combustion gas (carbon mono-oxide) in every year and this gas attributable to increase death rate proportion to the high demand of briquette usage. It arise great problem ill point of national sanitation. Therefore, the study has a big aim to accomplish depressing CO gas or stimulating comlete combustion by both the methods of physical improvement of present combustion devices and chemical improvement by using V$_2$O$\sub$5/ catalyst to depress CO gas or fasten complete combustion Progress. Sucessful result of this study will not only to decrease the death rate but also to contribute fearless handling of briquette combustion so as to perform improving public Welfare. 2. Contents and scope of study. A. comparison of present and improved fuel hole device. B. Examination of effectness of improved elements. C. Effectness of miffed usage of catalyst. D. Comparison of Catalyst effectness. E. Examination of effectness of black slate containing V$_2$O$\sub$5/. 3. Results and recommendations of the study A. Absolute necessity of supplying secondary air by improved combustion device. B. Oxide Vanadium (V$_2$O$\sub$5/) has the greatest effectness to eliminate CO gas. C. Most effective catalyst of V$_2$O$\sub$5/ containing slate comes from "Samgoe" coal mine. D. By plastering catalyst on the cover plate of fire hole, it stimulate chemical reaction of re-combustion and preserving heat. E. Recommend to continute further precise study to practice with low-cost and handy devices to be applied the study results.

  • PDF

A New Approch for Catalyst Optimization: Host/Guest Complexes of Chiral Bisphosphine Bearing Imidazolidinone and Their Application in Rh-Catalyzed Asymmetric Hydrogenation

  • Park, Jung-Hwan;Shin, Hyun-Ik;Park, Doo-Han;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.635-638
    • /
    • 2010
  • As a new strategy for the optimization of a chiral catalyst, the catalytic activity of the host-guest complexes of chiral bisphosphine bearing imidazolidinone was investigated in Rh-catalyzed asymmetric hydrogenation of enamide. Marginal enhancement in enantioselectivity was observed and the nature of interaction between host-guest was experimentally elucidated.

Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst (촉매 활성층 두께 제어를 통한 연료전지 성능 해석)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Low Formaldehyde Release D.P. Finish on Cotton Fabrics (면직물의 저$\cdot$Formaldehyde D.P. 가공)

  • Kim Sung Reon;Ryu Hyo Seon;Noh Hyung Eun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.3
    • /
    • pp.71-81
    • /
    • 1986
  • In order to control the formaldehyde release from D.P. finished fabric, cotton fabric was padded in DMDHEU resin bath containing either $Zn(NO_3)_2$ or $MgCl_2$ catalyst and a form-aldehyde scavenger like Glycerol, Sorbitol, Formamide, Polyvinyl alcohol (PVA, n= 2000) or diols, then dried and cured. The results are as follows : 1. When Lewis acid catalyst like $Zn(NO_3)_2$ or $MgCl_2$ was added in pad bath, the fabric finished with $Zn(NO_3)_2$ catalyst released the lower formaldehyde than with $MgCl_2$. 2. When the effect of pad bath pH was examined with varying the kinds of catalyst and the scavenger, it was found that the pad bath pH influenced on the amount of formaldehyde release and the optimum pad bath pH is at 4.3. Especially, in case of finishing at pad bath pH 4.3 with adding Formamide, the amount of formaldehyde release was decreased by about $45\~$35\%$ with $Zn(NO_3)_2$, while by about $20\~$45\%$ with $MgCl_2$ catalyst. In case of varying the concentration of a scavenger (Formamide), $1\%$ concentration of a scavenger was found to be the optimum level ana the higher the curing temperature up to $180^{\circ}C$, the lesser the amount of formaldehyde release were observed. 3. When the diol was used as scavenger, the amount of formaldehyde release was decreased by about $40\~$50\%$, but the longer the intramolecular length between OH groups, the lessor the amount of decrease of formaldehyde release were observed. 4. When the mixture of scavengers (Formamide and Glycerol) was added in the pad bath, .synergistic effect on formaldehyde release between the two scavengers wasn't observed. 5. The tensile strength of the resin finished fabric was reduced with increasing the pad lath pH and was influenced by the kind of scavengers, and the tensile strength was severely reduced when scavengers, especially Formamide, was added. The wrinkle recovery property is generally improved by resin finish on cotton fabric. When Formamide was added, the wrinkle recovery property is slightly decreased compared with that of the fabrics resin finished without a scavenger, and when polyol was added, the wrinkle recovery property showed almost no change.

  • PDF

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

A Study on Reforming Reaction for Preparation of Synthesis Gas from Land-Fill Gas (매립지가스(LFG)로부터 합성가스 제조를 위한 개질반응 연구)

  • Cho, Wooksang;Yoon, Jungsup;Park, Sunggyu;Mo, Yongki;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas ratio on the amount of LFG components over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Results were obtained through the activity reaction experiments at the temperature of $900^{\circ}C$ and GHSV of 4,000. The results were as following; it has generally shown that methane conversion rate increased with the increase of oxygen and carbon dioxide amounts. Highly methane conversion of 92~93% and syngas ratio of approximately 1.0 were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 360ml/min of water, respectively, under reactor pressure of 15 bar for 50 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.