• Title/Summary/Keyword: 3D body shape

Search Result 385, Processing Time 0.033 seconds

Usability verification of virtual clothing system for the production of a 3D avatar reproduced from 3D human body scan shape data - Focusing on the CLO 3D program - (3차원 인체스캔형상을 재현한 3D 아바타 제작을 위한 가상착의 시스템의 활용성 검증 -CLO 3D 프로그램을 중심으로-)

  • Hong, Eun-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The purpose of this study is to create a 3D avatar from 3D human body shape data using the CLO 3D virtual clothing program and to verify the feasibility of avatar production using the virtual clothing system for verifying size and shape. The research method was to select one virtual representative model that is the closest to the mean size of each body item for each age group. Using the 3D human body scan shape of a 40-69 years old male was applied to the CLO 3D virtual wearing system. Using the CLO 3D Avatar conversion menu, we verified the feasibility of creating a 3D avatar that reproduces the human body scan shape. In the dimension comparison between the 3D avatar and the fictitious representative model, the dimension difference was noticeable in height, circumference, and length. However, as a result, the converted 3D avatar showed less than a 5% difference in most human dimensions. In addition, since the body shape and posture were reproduced similarly, the utilization of the avatar was verified.

A Comparative of the Different between Virtual Fashion 3D Avatar and Size Korea of Adult Women's Body Shapes (성인여성 버추얼 패션 3D 아바타와 Size Korea 인체형상의 형태 차이 비교)

  • Lee, Ye-Ri;Jang, Jeong-Ah
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2020
  • This study provide basic data to develop a dress form reflecting body shape characteristics by age and to produce a 3D body form in a virtual fitting program. A comparative analysis was conducted on the size, section shape, and slope of side shape of the modeling form by the sizing of the basic female avatar in CLO 3D, one of the 3D apparel CAD programs and the body form of women in their 20s-50s by body shape in the 6th Size Korea (2010). First, all the differences were formed similarly in the direct measurements between the 3D avatar and the body form were within 1 mm. Second, in a comparison of the section form of the avatar and body form in Size Korea, the avatar was formed in straight body shape and did not reflect a spinal curvature according to age. As a result of an examination of the items with a difference over 5° in the slope of side shape, there were angle differences in numerous body shapes in the angles of the side upper abdomen, side upper back, and side upper bust, and the avatar's bust shape was expressed more flatly compared to body form. It will be possible to produce an avatar that can adequately reflect body shape characteristics by adding detailed length and angle items by the region like waist back length and front length in producing the avatar reflecting body shape characteristics, instead of a standard body shape.

Classification of adult male torso shapes using 3D body scan data (3D 스캔 데이터에 의한 성인 남성의 체간부 형태 유형화)

  • Hong, Eun-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.165-179
    • /
    • 2019
  • This study used 3D body scan data to classify body shapes according to the torso shape of adult males aged 20-75 years. This data will be provided so that the apparel industry can make apparel products corresponding to body characteristics by age. The study used 1,796 adult males between the ages of 20 and 75 and the 3D body shape data of the '5th Research on National Standard Anthropometry'. For data analysis, the program SPSSWIN Ver. 17.0 was used to calculate the mean and frequency allowing for a factor analysis, cluster analysis, analysis of variance, and Duncan test. To classify body shape according to the torso shape of adult males, this study considered nine factors: 'horizontal size of torso,' 'vertical size of body,' 'curve of torso and waist-abdomen flatness ratio,' 'length of torso,' 'shape of neck area,' 'degree of lateral curve,' 'difference between front and back interscye length,' 'shoulder armscye shape,' and 'chest flatness ratio.' Based on the results of the factor analysis, the torso shapes of adult males were classified into five types. Type 1 is "upright body with flat, curvy shape", Type 2 is "curve sway back body type", Type 3 is "flat, abdominally obese body", Type 4 is "obese, crooked body" and Type 5 is "thick sway front body type." named.

A Study on the Use of 3D Human Body Surface Shape Scan Data for Apparel Pattern Making (의류 패턴 설계를 위한 삼차원 인체 체표면 스캔 데이터 활용에 관한 연구)

  • 천종숙;서동애;이관석
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • In the apparel industry, the technology has been advanced rapidly. The use of 3D scanning systems fur the capture and measurement of human body is becoming common place. Three dimensional digital image can be used for design, inspection, reproduction of physical objects. The purpose of this study is to develop a method that drafts men's basic bodice pattern from scanned 3D body surface shape data. In order to pursue this purpose the researchers developed pattern drafting algorithm. The 3D scanner used in this study was Cyberware Whole Body Scanner WB-4. The bodice pattern drafting algorithm from 3D body surface shape data developed in this study is as follows. First, convert geometric 3D body surface data to 3D polygonal mesh data. Second, develop algorithm to lay out 3D polygonal patches onto a plane using Auto Lisp program. The polygon meshes are coplanar, and the individual mesh is continuously in contact with next one The bodice front surface shape data in polygonal patches form was lined up in bust and waist levels. The back bodice was drafted by lining up the polygonal mesh in scapula, chest, and waist levels. in the drafts, gaps between polygons were formed into the darts.

  • PDF

Customization using Anthropometric Data Deep Learning Model-Based Beauty Service System

  • Wu, Zhenzhen;Lim, Byeongyeon;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2021
  • As interest in beauty has increased, various studies have been conducted, and related companies have considered the anthropometric data handled between humans and interfaces as an important factor. However, owing to the nature of 3D human body scanners used to extract anthropometric data, it is difficult to accurately analyze a user's body shape until a service is provided because the user only scans and extracts data. To solve this problem, the body shape of several users was analyzed, and the collected anthropometric data were obtained using a 3D human body scanner. After processing the extracted data and the anthropometric data, a custom deep learning model was designed, the designed model was learned, and the user's body shape information was predicted to provide a service suitable for the body shape. Through this approach, it is expected that the user's body shape information can be predicted using a 3D human body scanner, based upon which a beauty service can be provide.

Analysis of Middle-aged Men's Frontal Body Shape Asymmetry using 3D Body Scan Data (3차원 인체 스캔 데이터를 활용한 중년 남성 정면 비대칭 체형 특성 분석)

  • Minseon Lee;Dong-Eun Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.511-530
    • /
    • 2023
  • This study aims to analyze middle-aged men's frontal body shape asymmetry by measuring the left and right body dimensions and angles of 388 middle-aged men aged 40 to 59 using 3D body scan data and comparing the measured values. The study also compares the measured values of width, height, and angle and their relationships using Size Korea's anthropometric measurement and posture index of the New York Posture Rating Scale. The results confirm that the asymmetric shape characteristics of the upper and lower body appear differently. In addition, the asymmetrical characteristics between the upper and lower body differed, indicating that the close parts of the body affect each other. Similar to the difference in the left and right frontal body shapes and the average angle distribution, the asymmetrical upper and lower body characteristics also are found to be dissimilar when the correlations are examined. In contrast, there is no asymmetry in the width, height, and angle considering the age and BMI groups. Finally, the study classifies three body types and identifies their asymmetric characteristics. Overall, this study contributes primary data for further research on pattern production for asymmetric and unique body types and the development of customized apparel products.

The Body Shape and 3D Humanbody Model for the Electronic Commerce of the Clothing Manufacture of College Women in their Twenties (의류제품(衣類製品)의 전자상거래(電子商去來)를 위한 20대(代) 여대생(女大生)의 체형(體型) 및 3D 인체(人體) 모형(模型))

  • Kim, Hyo-Sook;Lee, So-Young
    • Journal of Fashion Business
    • /
    • v.8 no.4
    • /
    • pp.94-103
    • /
    • 2004
  • The purpose of this study was to make activated electronic business transaction of clothes. The subject used for this study was 19 - 24 aged 149 college women who most likely buying products through internet. By compare the 149 women's body shape with 3D model, 149 women could be judged their body shape objectively. We showed the average 3D model by the measurement of 19 - 24aged women's body shape. 19 - 24aged women are big customer of internet shopping mall. By understanding of the difference between real somatotype and perceptual somatotype, we can reduce the disadvantage such as returning clothes. Also, imaginary fitting model can be used for internet shopping mall, animation work, fashion show, and advertisement work. Therefore, we can expect the worth of this study to do.

A Study on Body Shape for 3D Virtual Body Shape Transformation - Focusing on the Women with age of forties - (3차원 가상바디 변형을 위한 체형연구 - 40대 여성을 대상으로 -)

  • Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.265-277
    • /
    • 2015
  • The aim of this study was to successfully reflect human body changes on the transformation of the virtual body within 3D virtual fitting spaces. For this purpose, existing problems of shape transformation of the virtual body were analyzed and regression equations which provides useful basic data for transformation of the virtual body that can be applied usefully to the 3D virtual fitting system was developed. Necessary data for the analyses were body measurement and 3D scan data of women with average physical form between the ages of 40 through 49. The reason that we used human body changes of the female subjects in their forties was based on the recognition that fundamental female body changes start to occur from age of forty. Body shapes were largely divided into 3 groups according to obesity which was found to be the biggest factor of shape change. Seven factors were extracted based on factor analysis of 47 body measurement categories and regression equations were created to extract specific measurements for each BMI group based on these seven factors. The major contribution of this paper can be summarized as follows. First, the regression equations to extract specific measurements based on the 7 representative variables remediated existing problem of virtual bodies as it increased the number of body shape transformation areas. Second, the regression equations helped to overcome the problem of current failing to reflecting changes in body cross-section shape based on simple girth measurements based on analysis of cross-section distances.

Body Shape Variations Measurements with 3D Scanner for Wearing Foundation (3D Scanner를 이용한 foundation 착용시의 인체 변화 계측)

  • Park, Ji-Eun;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.9 no.6
    • /
    • pp.651-657
    • /
    • 2007
  • This study was carried out to analyse body configuration and to observe any space between skin and foundation. A special 3D scanner was used to analyze this foundation. Experimental foundations were brassiere, girdle, and all-in-one. Four subjects volunteered, each subject was scanned while wearing foundation and not wearing foundation. Body shape variations were analyzed with an Auto CAD and ScanWax program which analyzes cross section of the skin surface to look for any changes. Height was increased all parts of body, circumference was increased in breast and bust while wearing the foundation. The hip thickness was not increased with wearing the foundation. Therefore this foundation makes people have a different appearance due to unexpected body shape variations. The effects of this foundation should be classified by observing height, circumference, and thickness changes in the body.

A Study on the Classification of Lower Body Shape Type for Fit Evaluation of Slacks (슬랙스 맞음새 평가를 위한 하반신 체형 유형화에 관한 연구)

  • Kim, Seonyoung;Nam, Yunja
    • Journal of Fashion Business
    • /
    • v.20 no.2
    • /
    • pp.181-196
    • /
    • 2016
  • This study intended to suggest criteria for selection of subjects by lower body shape types necessary for evaluating slacks. For this, the characteristics were examined by lower body parts which would influence the fit of slacks on 3D human body shape data of the front and sides of the lower body for lower body shaping. The frequency of subjects by lower body shape types and the boundary points for discrimination of each type were suggested so that they could be available in selecting subjects. Using the data from Size Korea(2004), indirect measurement values measured on the front and sides of the lower body among 3D human body shape data of 175 subjects were analyzed. Their height, waist, and hip circumference fell under the range of standard deviation based on the mean of women aged 18~24 years, and then lower body shaping was conducted by combining the front and side shapes of the lower body. The front of the lower body was classified into four sections: average waist/average hip type(F1), average waist/narrow hip tyle(F2), narrow waist/narrow hip type(F3) and narrow waist/wide hip type(F4) and the sides of the lower body were divided into four sections: average abdomen/average hip type(S1), flat abdomen/average hip type(S2), average abdomen/protrude hip type(S3)and round abdomen/flat hip type(S4), and thus total 16 lower body types were created by cross analysis. Besides, discriminant analysis suggested the boundary points for each shape type of the front and sides of the lower body as a criterion for deciding lower body shape type of each subject