• 제목/요약/키워드: 3D beam element

검색결과 307건 처리시간 0.026초

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

복합재 블레이드의 1차원 보 모델링 (One-Dimensional Beam Modeling of a Composite Rotor Blade)

  • 이민우;배재성;이수용;이석준;전부일
    • 항공우주시스템공학회지
    • /
    • 제2권1호
    • /
    • pp.7-12
    • /
    • 2008
  • The three-dimensional finite element modeling of a composite rotor blade is very hard and requires much computation effort. The efficient method to model a composite beam is necessary for the dynamic and aeroelastic analyses of rotor blades. In this study, the beam modeling method of a composite rotor blade is studied using VABS. The computer program, VABS (Variational Asymptotic Beam Section Analysis), uses the variational asymptotic method to split a 3-D nonlinear elasticity problem into 2-D cross-sectional analysis and 1-D nonlinear beam problem. The VABS can produce the sectional stiffness coefficients of composite rotor blades with various cross section and initial twist/curvatures, and recover the original 3-D distribution of displacement/strain/stress fields. The results of various cross section beams show that VABS gives us the accurate results comparared to commercial codes and does not need much computation effort. It can be concluded that VABS provides the efficient method to establish the FE model of a composite rotor blade.

  • PDF

Beam Tracing 기법을 이용한 수동 소나 센서의 수신 음압해석 프로그램 개발 (Development of Received Acoustic Pressure Analysis Program of CHA using Beam Tracing Method)

  • 권현웅;홍석윤;송지훈;전재진;서영수
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.190-198
    • /
    • 2013
  • In order to predict acoustic pressure distributions by exterior incident wave at Cylindrical Hydrophone Array (CHA) sensor's positions, acoustic pressure analysis is performed by using beam tracing method. Beam tracing method is well-known of reliable pressure analysis methods at high-frequency range. When an acoustic noise source is located at the center of rectangular room, acoustic pressure analysis is performed by using both beam tracing method and Power Flow Boundary Element Method (PFBEM). By comparing with results of beam tracing method and those of PFBEM, the accuracy of beam tracing method is verified. We develop the CHA pressure analysis program by verified beam tracing method. The developed software is composed of model input, sensor array creator, analysis option, solver and post-processor. We can choose a model option of 2D or 3D. The sensor array generator is connected to a sonar which is composed of center position, bottom, top and angle between sensors. We also can choose an analysis option such as analysis frequency, beam number, reflect number, etc. The solver module calculates the ray paths, acoustic pressure and result of generating beams. We apply the program to 2D and 3D CHA models, and their results are reliable.

보강재로 보강된 개방 원뿔형 쉘의 해석 (Analysis of Open Conical Shells with Stiffeners)

  • 박원태;최재진;손병직
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2004
  • In this study, open conical shells with ring and stringers are analyzed A versatile 4-node shell element which is useful for the analysis of conical shell structures is used and 3-D beam element is used for stiffeners. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of finite elements. Optimum location and optimum section properties of ring and stinger are obtained. It is shown thai the thickness of conical shell can be reduced about $20\~50\%$ by appropriate location of stiffeners.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Effect of cylinder diameter and boat tail angle on the free vibration characteristics of a typical payload fairing

  • Ramamurti, V.;Rajarajan, S.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.345-353
    • /
    • 2002
  • Three noded plate and shell finite element and 3D beam element in conjunction with Lanczos method are used for studying the effect of boat tail angle on the free vibration characteristics of a typical payload fairing for three different cylinder diameters with height to diameter ratio 1.5. Configurations without boat tail structural member are also studied. One half of the one side fairing structure is considered for the analysis and symmetric boundary conditions are used.

구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구 (A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings)

  • 정성남;동경민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

경주지진에 의한 곡선교량의 내진 안전성 평가 (Seismic Performance Evaluation of Curved Bridges by Gyeong-Ju Earthquakes)

  • Jeon, Jun-Tai
    • 한국재난정보학회 논문집
    • /
    • 제14권1호
    • /
    • pp.43-50
    • /
    • 2018
  • 본 연구에서는 곡선형 보의 선형탄성 3D Solid 유한요소 모델을 구축하고 외력이 작용하였을 때 유한요소 해석을 수행하였다. 유한요소 해석결과와 이론해 결과의 오차는 대부분의 위치에서 1% 내외로 발생하는 것으로 보아 이론해와 잘 부합한다고 판단된다. 검증된 유한요소 모델을 이용하여 시간이력해석을 수행하였으며 시간이력해석결과 경주 지진파 적용 시 가장 작은 결과가 나타났으며 이는 경주 지진파의 특성이 고주파 성분의 영역의 특성을 보이기 때문이다. 또한 곡선형 보의 곡률중심을 $45^{\circ}$로 감소시켜 동적 해석을 수행하였을 때 Lomaprieta 지진파의 Von-Mises 결과가 647.824MPa로 가장 큰 것으로 나타났다.

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

풍력발전기 로터 블레이드의 등가 구조모델 수립 (Equivalent Structural Modeling of Wind Turbine Rotor Blade)

  • 박영근;황재혁;김석우;장문석;배재성
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF