• 제목/요약/키워드: 3D beam

검색결과 1,706건 처리시간 0.034초

집속이온빔장치와 주사전자현미경을 이용한 박막 트랜지스터 구조불량의 3차원 해석 (Three Dimensional Reconstruction of Structural Defect of Thin Film Transistor Device by using Dual-Beam Focused Ion Beam and Scanning Electron Microscopy)

  • 김지수;이석열;이임수;김재열
    • Applied Microscopy
    • /
    • 제39권4호
    • /
    • pp.349-354
    • /
    • 2009
  • TFT-LCD의 구조불량이 발생한 박막 트랜지스터에 대해서 집속이온빔 가공장치(Dual-beam FIB/SEM)를 이용하여 연속절편법(Serial sectioning)과 일련의 연속적인 2차원 주사전자현미경 이미지를 얻었고, IMOD 소프트웨어를 통해서 3차원 구조구현(3D reconstruction) 연구를 하였다. 3차원 구조구현 결과, Gate막과 Data막이 접합되어 있는 불량이 관찰되었다. 두 막이 접합되어서 ON/OFF 역할을 하는 Gate의 기능이 상실되었고, Data신호는 Drain을 통해서 투명전극에 전류를 공급하여 계속 빛나는 선 불량(line defect)이 발생한 것으로 판단된다. 이 논문의 결과인 집속이온빔 가공장치(Dual-Beam FIB/SEM)를 이용한 3차원 구조구현 연구와 연속절편법, 주사전자현미경 이미지작업, 이미지 프로세싱에 대한 결과는 향후 연구의 기초자료로 활용될 수 있을 것으로 판단된다.

2관절 유연한 로봇 팔에 대한 비선형 제어 (Deterministic Nonlinear Control of Two-Link Flexible Arm)

  • 한종길;손영수
    • 한국전자통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.236-242
    • /
    • 2009
  • 2관절 유연한 로봇 팔는 관절 축을 회전할 때 진동이 발생한다. 본 논문에서는 유연한 로봇팔의 진동 동력학은 bernoulli-Euler의 beam이론과 라그란지 방정식을 이용하여 구하였고, $\dot{D}$-2C가 skew symmetric이다는 사실을 사용하여 계산량을 줄이는 단순한 구조의 새로운 제어기를 제안한다. Lyapunov 안정도 이론은 관절을 조절하기 위한 안정한 확정적인 비선형 제어기를 성취하기 위하여 적용된다.

  • PDF

유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계 (Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.131-135
    • /
    • 2009
  • We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • 한국산업융합학회 논문집
    • /
    • 제25권4_1호
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

초소형 전자칼럼의 제작 및 특성 연구 (New Fabrication Method of the Electron Beam Microcolumn and Its Performance Evaluation)

  • 안승준;김대욱;김영철;안성준;김영정;김호섭
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.186-190
    • /
    • 2004
  • An electron beam microcolumn composed of an electron emitter, micro lenses, scan deflector, and focus lenses have been fabricated and tested in the STEM mode. In this paper, we report a technique of precisely aligning the electron lenses by the laser diffraction patterns instead of the conventional alignment method based on aligner and STM. STEM images of a standard Cu-grid were observed using a fabricated microcolumn under both the retarding and accelerating modes.

비내진 상세를 가진 RC 보-기둥 접합부의 거동 (Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints)

  • 이한선;우성우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.133-140
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the Joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior Joint caused the 10%~20% reduction of strength and 27% reduction of ductility iii comparison with tile case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.n.

  • PDF

Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam

  • Shan, Xiaomin;Huang, Anzhong
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.281-290
    • /
    • 2022
  • In the current research, the thermal buckling characteristics of the bi-directional functionally graded nano-scale tapered beam on the basis of a couple of nonlocal Eringen and classical beam theories are scrutinized. The nonlocal governing equation and associated nonlocal boundary conditions are constructed using the conservation energy principle, and the resulting equations are solved using the generalized differential quadrature method (GDQM). The mechanical characteristics of the produced material are altered along both the beam length and thickness direction, indicating that it is a two-dimensional functionally graded material (2D-FGM). It is thought that the nanostructures are defective because to the presence of porosity voids. Finally, the obtained results are used to design small-scale sensors and make an excellent panorama of developing the production of nanostructures.

PCB의 3차원 검사 (3D Inspection of Printed Circuit Boards)

  • 조홍주;박현우;이준재
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2375-2378
    • /
    • 2003
  • In manufacture of printed circuit boards, one important issue is precisely to measure the three-dimensional shape of the solder paste silk-screened prior to direct surface mounting of chips. This paper presents the 3D shape reconstruction of solder paste using the optical triangulation method based on structured light or slit beam and the measurement algorithm for height, volume. area, and coplanarity on component pads from the 3D range image. Futhermore, statistical process control function is incorporated for process capability analysis.

  • PDF