• Title/Summary/Keyword: 3D alignment

Search Result 307, Processing Time 0.028 seconds

Align-free Micro-optic Mach-Zehnder Interferometric Filter (정렬에 무관한 마이크로옵틱 마하젠더 간섭계형 필터)

  • Lee, Jong-Hoon;Kim, Hyun-Deok;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.285-289
    • /
    • 2006
  • A novel alignment-free micro-optic MZI filter has been demonstrated. The filter is composed of two fiber-pigtailed collimators and a beam-splittingplate with a periodically etched stripe pattern. We fabricated the plate through a standard lithographic formulation process by using a pyrex substrate glass with SU-8 resist coating on its one of the surfaces. The maximum insertion loss of the implemented filter was less than 2 dB over 1000 nm to 1600 nm and the extinction ratio was larger than 33 dB. The measured PDL within the 3-dB pass band of the filter was less than 0.15dB and the maximum extinction ratio variation was less than 2 dB even when the worst alignment error occured.

Development of Control Method for Self-Driving Roller Conveyor Based on 3D Simulation (자체 구동 롤러 컨베이어의 3차원 시뮬레이션 기반 제어 기법 개발)

  • Seokwon Lee;Byungmin Kim;Heon Huh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.861-864
    • /
    • 2024
  • The self-driving roller conveyor system, which transports target products by controlling multiple rollers with a motor, is a logistics system suitable for branching and joining logistics and controlling the alignment of target products, and its utilization is increasing, especially in the food manufacturing process. In this paper, we build a simulation environment using Unity software based on 3D graphic modeling of a self-driving roller conveyor system. In a situation where target products are supplied irregularly in terms of time, a method is proposed that can align products to maintain constant spacing by controlling the rollers. Simulation results show that effective alignment of products is possible by controlling the motor that drives the roller based on sensor data of the product position.

Tracing the evolution of massive galaxies; Alignment of elliptical galaxies in the Virgo cluster

  • Kim, Suk;Jeong, Hyunjin;Lee, Jaehyun;Lee, Youngdae;Joo, Seok-joo;kim, Hak-Sub;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2017
  • We study the alignment of kinematic position angles (PAkin) of early-type galaxies in the Virgo cluster using Atlas3D data. The PAkin represent the direction of the angular momentum of the galaxies better than the photometric position angles. Therefore, the alignment of their PA$_{kin}$ is a useful tool to trace the momentum direction. The early-type galaxies in the Virgo cluster have been known to be distributed as filamentary structures inside the cluster. We found that their PAkin are aligned to two directions of 20degree and -80degree. This fact is confirmed using the bootstrap test, and that is, the two alignment angles are statistically significant. Besides, these two angles are surprisingly aligned parallel to the filamentary structures inside the cluster. These results suggest that early-type galaxies were formed by major merging in the filament structures and then fall into the Virgo cluster while maintaining their position angles.

  • PDF

Interplay between epigenome and 3D chromatin structure

  • Man-Hyuk Han;Dariya Issagulova;Minhee Park
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.633-644
    • /
    • 2023
  • Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the three-dimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions.

A study on the accuracy evaluation of dental die models manufactured by 3D printing method (3D 인쇄방법으로 제작된 치과용 다이 모델의 정확도 평가연구)

  • Jang, Yeon
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Purpose: To evaluate the accuracy of the 3D printed die models and to investigate its clinical applicability. Methods: Stone die models were fabricated from conventional impressions(stone die model; SDM, n=7). 3D virtual models obtained from the digital impressions were manufactured as a 3D printed die models using a 3D printer(3D printed die models;3DM, n=7). Reference model, stone die models and 3D printed die models were scanned with a reference scanner. All dies model dataset were superimposed with the reference model file by the "Best fit alignment" method using 3D analysis software. Statistical analysis was performed using the independent t-test and 2-way ANOVA (α=.05). Results: The RMS value of the 3D printed die model was significantly larger than the RMS value of the stone die model (P<.001). As a result of 2-way ANOVA, significant differences were found between the model group (P<.001) and the part (P<.001), and their interaction effects (P<.001). Conclusion: The 3D printed die model showed lower accuracy than the stone die model. Therefore, it is necessary to further improve the performance of 3D printer in order to apply the 3D printed model in prosthodontics.

Accuracy of three-dimensional printing for manufacturing replica teeth

  • Lee, Keun-Young;Cho, Jin-Woo;Chang, Na-Young;Chae, Jong-Moon;Kang, Kyung-Hwa;Kim, Sang-Cheol;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.217-225
    • /
    • 2015
  • Objective: Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods: Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results: Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions: This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.

Kinmatics Analysis of pelvis and lower extremity using orientation angles during a developpe a la seconde (Developpe a la seconde 동작 시 골반과 하지의 지향각(Orientation angles)의 운동학적 분석)

  • Jung, Chul-Jung;Jeung, He-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.259-270
    • /
    • 2004
  • The purpose of this study was to analysis of pelvis and lower extremity using orientation angles during a developpe a la seconde. Data were collected by Kwon3D program. Two females professional modem dancer were participated in this experiment. Subjects performed a developpe a la seconde in meddle heights(about 90 dog.) The results were as follows. The orientation angles of pelvis were, in most cases, caused by the movement of trunk and thigh. It was restricted the movement of pelvis within narrow limits because the movement of pelvis was very important to lower extremity alignment. The orientation angle of shank against thigh showed a change of angle about $3-6^{\circ}$ in internal external rotation. The orientation angle of foot against shank showed a change of angle about $6-7^{\circ}$ in internal external rotation.

Free-space quantum key distribution transmitter system using WDM filter for channel integration

  • Minchul Kim;Kyongchun Lim;Joong-Seon Choe;Byung-Seok Choi;Kap-Joong Kim;Ju Hee Baek;Chun Ju Youn
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.806-816
    • /
    • 2024
  • In this study, we report a transmitter system for free-space quantum key distribution (QKD) using the BB84 protocol, which does not require an internal alignment process, by using a wavelength-division multiplexing (WDM) filter and polarization-encoding module. With a custom-made WDM filter, the signals required for QKD can be integrated by simply connecting fibers, thus avoiding the laborious internal alignment required for free-space QKD systems using conventional bulk-optic setups. The WDM filter is designed to multiplex the single-mode signals from 785-nm quantum and 1550-nm synchronization channels for spatial-mode matching while maintaining the polarization relations. The measured insertion loss and isolation are 1.8 dB and 32.6 dB for 785 nm and 0.7 dB and 28.3 dB for 1550 nm, respectively. We also evaluate the QKD performance of the proposed system. The sifted key rate and quantum bit error rate are 1.6 Mbps and 0.62%, respectively, at an operating speed of 100 MHz, rendering our system comparable to conventional systems using bulk-optic devices for channel integration.

Effects of Additional Annealings via Josephson Weak-links on the Electrical Properties of Ceramic $YBa_2Cu_3O_{7-g}$ (부가적인 Annealing이 Josephson weak-links를 통하여 Ceramic 고온초전도체 $YBa_2Cu_3O_{7-g}$ 에 미치는 영향)

  • Jeong, D.Y.;Black, T.D.;Krichene, S.;Reynolds, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.287-290
    • /
    • 1989
  • Single-phase $YBa_2Cu_3O_{j-g}$ (YBC) ceramic samples were annealed at $700^{\circ}C$ under a flowing $O_2$ atmosphere for 0, 18, 36, 54 and 72. hours after sintering. The resistivities(p) and the critical current densities($J_c$) of the samples were measured in a temperature range 77 to 300 K by a four probe method, using silver paint contacts. The variations of the electrical properties with annealing time are explained in terms of flux pinning, percolation probability and randomness, and alignment of grains and twins.The anomalous increases in $J_c$ and $T_c$ observed in sample annealed for a relatively long time possibly due to alignment of grains and twins, may imply the occurrence of superconducting glass state in high-$T_c$ superconducting ceramic.

  • PDF

Analysis of Traffic Accident Characteristics for the Overlap Section of Horizontal and Vertical Alignment (평면곡선과 종단곡선이 겹친 복합선형 구간에서 교통사고 특성분석)

  • Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.95-102
    • /
    • 2012
  • This study has been conducted to characterize the relations between the accident rate and the overlap section elements where the horizontal alignment and vertical alignment are overlapped. The researches were performed on Horizontal curve sections of 4-lane highways with 100km/h of design speed and speed limit. Korea Highway Corporation's Geographic Figurative Information System was adopted for geometric organization and Highway Traffic Accident Statistics was used. The results reveal that sections made of a single slope without vertical curve has greater accident rate than those with vertical curve, and that sections with 1 vertical curve are higher in the accident rate than those with over 2 vertical curve. For the sections with 1 vertical curve, SAG sections are higher than CREST sections and for the previous straight section of horizontal curve are higher than curved ones. In particular, when the road surface is wet, the accident rate is closely related with SAG vertical curves or leftward horizontal curved sections. This study will have meanings that it proposes the importance of design of road alignment by taking consideration of 3D synthetic alignment conditions for improvement of the road safety.