• Title/Summary/Keyword: 3D alignment

Search Result 307, Processing Time 0.034 seconds

Interference Alignment in 2-user X Channel System with Orthogonal and quasi-orthogonal Space-time Block Codes (직교 및 준직교 시공간 블록 부호를 통한 2-사용자 X 채널에서의 간섭정렬)

  • Mohaisen, Islam;Lee, Saet-byeol;Mohaisen, Manar;Elaydi, Hatem
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1785-1796
    • /
    • 2015
  • In this paper, we investigate achieving the full diversity order and power gains in case of using OSTBCs and quasi-OSBCs in the x channel system with interference alignment with more than 2 antennas at each terminal. A slight degradation is remarked in the case of quasi-OSTBCs. In terms of receiver structure, we show that due to the favorable structure of the channel matrices, the simple zero-forcing receiver achieves the full diversity order, while the interference cancellation receiver leads to degradations in performance. As compared to the conventional scheme, simulation results demonstrate that our proposed schemes achieve 14dB and 16.5dB of gain at a target bit error rate (BER) of 10-4 in the case of OSTBCs with 3 and 4 antennas at each terminal, respectively, while achieving the same spectral efficiency. Also, a gain of 10dB is achieved at the same target BER in the case of quasi-OSTBC with 4 antennas at each terminal.

Development of Performance and Evaluation Program for Optical Filters (광필터 성능평가 프로그램 개발)

  • Choi D.-S.;Park H. S;Seo Y. H;Jae T.-J.;Whang K.-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.220-225
    • /
    • 2004
  • This paper presents a program for the automatic alignment of optical axes and evaluation of the optical filter performance which is a key technologies for the production of optical module. Recently the production of optical filter module mostly depends upon handwork or semi-automation. Moreover, they have used an expensive spectrum analyzer. In this work, we have developed an automatic alignment and evaluation program of optical filter module using photo detector and developed program for automation and cost reduction of the production of optical titter module.

Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment

  • Cho, You-Jin;Kim, Mi-Sung;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.424-430
    • /
    • 2011
  • A novel T-type polyurethane 7 containing 1-(2,5-dioxyphenyl)-2-(5-(1,2,2-tricyanovinyl)-2-thienyl)ethenes as NLO chromophores, which constitute part of the polymer backbone, was prepared. Polyurethane 7 is soluble in common organic solvents such as DMF and DMSO. It shows a thermal stability up to $270^{\circ}C$ from TGA thermogram with $T_g$ value obtained from DSC thermogram near $155^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer film at 1560 nm fundamental wavelength is $3.56{\times}10^{-9}$ esu. Polymer 7 exhibits a thermal stability even at $5^{\circ}C$ higher than $T_g$, and no significant SHG decay is observed below $160^{\circ}C$, which is acceptable for nonlinear optical device applications.

The analysis on the shape of a Standard Test Specimen for the Torsion Test and The Effects of Misalignments (비틀림 시험에 대한 표준시험시편 형상 및 축 정렬 이상 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Park, Chi-Yong;Heo, Yong-Hak;Je, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.155-160
    • /
    • 2008
  • Using a three-dimensional (3-D) FE analyses, this paper provides the shape optimization of the standard test specimen for the torsion test, as well as a method for analyzing effects of misalignment under the angular and concentric misalignment. For verification, FE analysis is performed, which is designed for the perfectly full-model. To optimize the design shape of the torsion-controlled fatigue test specimen, we performed sensitivity analysis using shape parameters. Additionally, two kinds of misalignment (angular misalignment and concentric misalignment) are applied to the circular and tubular specimens to show effects of misalignments in the FE analysis. The present results will provide valuable information for designing shafts for every kind of mechanical system under torsional force.

  • PDF

Analysis on the behavior of a old tunnel supporting system by enlargement (노후터널 확대시 기존터널 지보재 응력 변화에 대한 분석)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1382-1387
    • /
    • 2010
  • A 3D FEM numerical analysis was performed to observe the changes of supporting system of a old 1-lane tunnel when it is enlarged to 2-lane, 3-lane and 4-lane. The standard Type-III supporting pattern was applied to the new tunnel because the ground was assumed as Type-III. The observation was carried out at the middle supporting system of the old 1-lane tunnel alignment. The results shows that the changes of old tunnel supporting system began when the new tunnel was excavated at 2D(D is the equivalent diameter of 1-lane tunnel) behind of the observation place and became very rapid from 1D.

  • PDF

Improvement of Microstructural Anisotropy of Nd-Fe-B-Ga-Nb Alloy by the Control of Hydrogen Reaction (수소반응속도 제어에 의한 Nd-Fe-B-Ga-Nb 합금의 미세조직 이방화율 향상에 관한 연구)

  • Lee, S.H.;Kim, D.H.;Yu, J.H.;Lee, D.W.;Kim, B.K.
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used for the sheet motors and the sunroof motors of hybrid or electric vehicles, due to their excellent magnetic properties. Microstructural alignment of HDDR treated powders are mostly depending on the hydrogen reaction in disproportionation step, so the specific method to control hydrogenation reaction is required for improving magnetic properties. In disproportionation step, hydrogenation pressure and reaction time were controlled in the range of 0.15~1.0 atm for 15~180 min in order to control the micorstructural alignment of $Nd_2Fe_{14}B$ phase and, at the same time, to improve remanence of HDDR treated magnet powders. In this study, we could obtain a well aligned anisotropic Nd-Fe-B-Ga-Nb alloy powder having high remanence of 12 kG by reducing hydrogen pressure down to 0.3 atm in disproportionation step.

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

Analysis of Biomechanical Changes According to Mechanical Alignment of the Lower Limbs when Gait with a Material Handling (중량물 취급 보행 시 하지의 역학적 정렬에 따른 생체역학적 변화 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Song, Han-Soo;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • Objective : Walking with a Material handling is an activity frequently undertaken by agricultural workers in Korea, due to the nature of their work. This study aimed to investigate differences in biomechanical variables according to the mechanical alignment of the lower limbs when walking with a heavy load, and to use this as basic data in the design of various working environments to reduce the skeletomuscular burden on the knee joint. Method : The study subjects comprised of 22 right-foot dominant adult men and women aged between 20 and 23 years. The subjects were divided into a varus or valgus group according to the mechanical alignment of the lower limb by using radiographic findings. The subjects walked without any load and with a load of 10%, 20%, or 30% of their body weight held in front of them. The Kwon3d XP program was used to calculate biomechanical variables. Results : The flexion/extension moment of the knee joint showed a decreasing trend with increased load, irrespective of the mechanical alignment of the lower limb, while the varus group did not show normal compensatory action when supported by one leg at the point of maximum vertical ground reaction force. In addition, in terms of the time taken, subjects showed no difficulties in one-foot support time up to 20%/BW, but at 30%/BW, despite individual differences, there was an increase in single limb. The increased load resulted in a decrease in the ratio of standing phase to ensure physical stability. The valgus group showed a trend of increasing the stability of their center of mass with increasing load, through higher braking power in the early standing phase. Conclusion : In conclusion, although there was no statistical difference in biomechanical variables according to the mechanical alignment of the lower limbs, the varus group showed a more irregular walking pattern with a Material handling than the valgus group, partially proving the association between lower limb alignment and walking with a Material handling.

Effects of implant alignment and load direction on mandibular bone and implant: finite element analysis (임플란트 배열과 하중 방향이 임플란트와 치조골에 미치는 유한요소 응력분석)

  • Chung, Hyunju;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.176-182
    • /
    • 2020
  • Purpose: To evaluate the effects of load direction, number of implants, and alignment of implant position on stress distribution in implant, prosthesis, and bone tissue. Materials and Methods: Four 3D models were made to simulate posterior mandible bone block: two implants and 3-unit fixed dental prosthesis (FDP) with a pontic in the center (model M1), two implants and 3-unit FDP with a cantilever pontic at one end (model M2), FDP supported by three implants with straight line placement (model M3) and FDP supported by three implants with staggered implant configuration (model M4). The applied force was 120 N axially or 120 N obliquely. Results: Peak von Mises stresses caused by oblique occlusal force were 3.4 to 5.1 times higher in the implant and 3.5 to 8.3 times higher in the alveolar bone than those stresses caused by axial occlusal force. In model M2, the connector area of the distal cantilever in the prosthesis generated the highest von Mises stresses among all models. With the design of a large number of implants, low stresses were generated. When three implants were placed, there were no significant differences in the magnitude of stress between staggered arrangement and straight arrangement. Conclusion: The effect of staggering alignment on implant stress was negligible. However, the number of implants had a significant effect on stress magnitude.

Synthesis and Nonlinear Optical Properties of Novel Y-Type Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang;Lee, Ju-Yeon;Won, Dong-Seon;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.506-512
    • /
    • 2007
  • 2,3-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and condensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel Y-type polyesters (4-6) containing the NLO-chromophores 2,3-dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 were soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymers 4-5 showed thermal stability up to $300^{\circ}C$ in thermogravimetric analysis with glass transition temperatures $(T_g)$, obtained from differential scanning calorimetry, in the range $81-95^{\circ}C$. The second harmonic generation (SHG) coefficients $(d_{33})$ of the poled polymer films at the 1064 nm fundamental wavelength were around $3.68{\times}10^{-9}$ esu. The dipole alignment exhibited high thermal stability up to $T_g$, and there was no SHG decay below $T_g$ due to the partial main-chain character of the polymer structure.