• Title/Summary/Keyword: 3D Volumes

Search Result 233, Processing Time 0.021 seconds

Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

  • Mattes, Malcolm D.;Zhou, Ying;Berry, Sean L.;Barker, Christopher A.
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung $V_{20}$ (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum $D_{max}$ (13.6 vs. 38.9 Gy), bowel $D_{200cc}$ (7.3 vs. 23.1 Gy), femur $D_{50}$ (34.6 vs. 57.2 Gy), and genitalia $D_{max}$ (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus $D_{mean}$ (16.9 vs. 22.4 Gy), brachial plexus $D_5$ (57.4 vs. 61.3 Gy), bladder $D_5$ (26.8 vs. 36.5 Gy), and femur $D_{50}$ (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

The Application of Circular Boundary Overlapping in 3-D Reconstruction of Neck Tumors (두경부 종물의 3차원 재건 영상에서, 원형 경계선 중첩을 이용한 경계선 추출법의 응용)

  • Yoo, Young-Sam
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.204-211
    • /
    • 2010
  • Background and Objectives : Boundary detection and drawing are essential in 3D reconstruction of neck mass. Manual tracing methods are popular for drawing head and neck tumor. To improve manual tracing, circular boundaries overlapping was tried. Materials and Methods : Twenty patients with neck tumors were recruited for study. Representative frames were examined for shapes of outline. They were all single closed curves. Circular boundaries were added to fill the outlines of the tumors. Inserted circles were merged to form single closed curves(Circular boundary overlapping, CBO). After surface rendering, 3 dimensional images with volumes and area data were made. Same procedures were performed with manual tracing from same cases. 3D images were compared with surgical photographs of tumors for shape similarity by 2 doctors. All data were evaluated with Mann-Whitney test(p<0.05). Results : Shapes of boundaries from CBO were similar with boundaries from manual tracing. Tumor outlines could be filled with multiple circular boundaries., While both boundary tracing gave same results in small tumors, the bigger tumors showed different data. Two raters gave the similar high scores for both manual and CBO methods. Conclusion : Circular boundary overlapping is time saver in 3 dimensional reconstruction of CT images.

Peach & Pit Volume Measurement and 3D Visualization using Magnetic Resonance Imaging Data (자기공명영상을 이용한 복숭아 및 씨의 부피 측정과 3차원 가시화)

  • 김철수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-234
    • /
    • 2002
  • This study was conducted to nondestructively estimate the volumetric information of peach and pit and to visualize the 3D information of internal structure from magnetic resonance imaging(MRI) data. Bruker Biospec 7T spectrometer operating at a proton reosonant frequency of 300 MHz was used for acquisition of MRI data of peach. Image processing algorithms and visualization techniques were implemented by using MATLAB (Mathworks) and Visualization Toolkit(Kitware), respectively. Thresholding algorithm and Kohonen's self organizing map(SOM) were applied to MRI data fur region segmentation. Volumetric information were estimated from segemented images and compared to the actual measurements. The average prediction errors of peach and pit volumes were 4.5%, 26.1%, respectively for the thresholding algorithm. and were 2.1%, 19.9%. respectively for the SOM. Although we couldn't get the statistically meaningful results with the limited number of samples, the average prediction errors were lower when the region segmentation was done by SOM rather than thresholding. The 3D visualization techniques such as isosurface construction and volume rendering were successfully implemented, by which we could nondestructively obtain the useful information of internal structures of peach.

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

Dosimetric comparison of IMRT versus 3DCRT for post-mastectomy chest wall irradiation

  • Rastogi, Kartick;Sharma, Shantanu;Gupta, Shivani;Agarwal, Nikesh;Bhaskar, Sandeep;Jain, Sandeep
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Purpose: To compare the dose distribution of three-dimensional conformal radiation therapy (3DCRT) with intensity-modulated radiation therapy (IMRT) for post-mastectomy radiotherapy (PMRT) to left chest wall. Materials and Methods: One hundred and seven patients were randomised for PMRT in 3DCRT group (n = 64) and IMRT group (n = 43). All patients received 50 Gy in 25 fractions. Planning target volume (PTV) parameters-$D_{near-max}$ ($D_2$), $D_{near-min}$ ($D_{98}$), $D_{mean}$, $V_{95}$, and $V_{107}$-homogeneity index (HI), and conformity index (CI) were compared. The mean doses of lung and heart, percentage volume of ipsilateral lung receiving 5 Gy ($V_5$), 20 Gy ($V_{20}$), and 55 Gy ($V_{55}$) and that of heart receiving 5 Gy ($V_5$), 25 Gy ($V_{25}$), and 45 Gy ($V_{45}$) were extracted from dose-volume histograms and compared. Results: PTV parameters were comparable between the two groups. CI was significantly improved with IMRT (1.127 vs. 1.254, p < 0.001) but HI was similar (0.094 vs. 0.096, p = 0.83) compared to 3DCRT. IMRT in comparison to 3DCRT significantly reduced the high-dose volumes of lung ($V_{20}$, 22.09% vs. 30.16%; $V_{55}$, 5.16% vs. 10.27%; p < 0.001) and heart ($V_{25}$, 4.59% vs. 9.19%; $V_{45}$, 1.85% vs. 7.09%; p < 0.001); mean dose of lung and heart (11.39 vs. 14.22 Gy and 4.57 vs. 8.96 Gy, respectively; p < 0.001) but not the low-dose volume ($V_5$ lung, 61.48% vs. 51.05%; $V_5$ heart, 31.02% vs. 23.27%; p < 0.001). Conclusions: For left sided breast cancer, IMRT significantly improves the conformity of plan and reduce the mean dose and high-dose volumes of ipsilateral lung and heart compared to 3DCRT, but 3DCRT is superior in terms of low-dose volume.

A STUDY ON THE VOLUMES AND FORMS OF THE PALATE FOR DECIDUOUS AND PERMANENT DENTITION (유치열과 영구치열의 구개 형태에 관한 연구)

  • Yang, Yeon-Mi;Baik, Byeong-Ju;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.696-706
    • /
    • 2003
  • The purpose of this study was to clarify the palatal forms through palatal curvatures of right to left, anterior to posterior direction, and difference of right and left palatal volumes in the primary and permanent dentition. Samples were consisted of normal occlusion of both dentition(50 males and 50 females each). Their upper plaster casts were used, measuring points were decided, through 3-dimensional laser scanning(3-D Laser Scanner, DS4060, LDI, U.S.A.), and fitting standard horizontal plane were made for measuring the height and sectioned volumes of palate. The results were as follows: 1. Palatal volume and height were greater at the right side of the palate in the primary and permanent dentition of male and female, but there was no significance. 2. Palatal height was greater in male compared to female, especially, there was significant difference at intercuspid, inter-second premolar area in the permanent dentition(P<0.05). 3. To the height of A-P direction of mid-palatal area, the highest point was 20mm in the primary dentition, 30mm in the permanent dentition from interdental papilla of central incisors. 4. Palatal height of inter-cuspid and inter-second premolar became shallow and broad, high and broad each, compared to inter-deciduous canine and inter-second deciduous molar.

  • PDF

A 3D Vocal Tract Modeling and Vowel Discrimination of Korean Monophthongs [이, 에, 아, 오, 우, 으] (한국어 단모음 [이, 에, 아, 오, 우, 으]에 대한 성도 3차원 모델링 및 모음 판별)

  • Seong, Cheol-Jae;Park, Jong-won;Kim, Gui-Ryong
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.185-188
    • /
    • 2005
  • We presents a new method for the measurement and analysis of the volume of the vocal tract using 3D magnetic resonance image. The relative ratios of volume A, B, and C, which are divided by the 2constriction points formed on the horizontal and vertical plane in vocal tract, take a decisive role indiscriminating Korean monophthong. Together with Fl-F2 and the minimum cross sectional area in the vocal tract, the relative ratios of the regional volumes were proved to be significant parameter in statistic viewpoint.

  • PDF

Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection (깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술)

  • Lee, Wonhee;Kim, Kwang Gi;Chung, Seung Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

An Efficient Method for Aneurysm Volume Quantification Applicable in Any Shape and Modalities

  • Chung, Jaewoo;Ko, Jung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.514-523
    • /
    • 2021
  • Objective : Aneurysm volume quantification (AVQ) using the equation of ellipsoid volume is widely used although it is inaccurate. Furthermore, AVQ with 3-dimensional (3D) rendered data has limitations in general use. A novel universal method for AVQ is introduced for any diagnostic modality and application to any shape of aneurysms. Methods : Relevant AVQ studies published from January 1997 to June 2019 were identified to determine common methods of AVQ. The basic idea is to eliminate the normal artery volume from 3D model with the aneurysm. After Digital Imaging and Communications in Medicine (DICOM) data is converted and exported to stereolithography (STL) file format, the 3D STL model is modified to remove the aneurysm and the volume difference between the 3D model with/without the aneurysm is defined as the aneurysm volume. Fifty randomly selected aneurysms from DICOM database were used to validate the different AVQ methods. Results : We reviewed and categorized AVQ methods in 121 studies. Approximately 60% used the ellipsoid method, while 24% used the 3D model. For 50 randomly selected aneurysms, volumes were measured using 3D Slicer, RadiAnt, and ellipsoid method. Using 3D Slicer as the reference, the ratios of mean difference to mean volume obtained by RadiAnt and ellipsoid method were -1.21±7.46% and 4.04±30.54%, respectively. The deviations between RadiAnt and 3D Slicer were small despite of aneurysm shapes, but those of ellipsoid method and 3D Slicer were large. Conclusion : In spite of inaccuracy, ellipsoid method is still mostly used. We propose a novel universal method for AVQ that is valid, low cost, and easy to use.

Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images (3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출)

  • Choi, Wonjune;Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.