• Title/Summary/Keyword: 3D Tracking

Search Result 768, Processing Time 0.031 seconds

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Study on Underwater Object Tracking Based on Real-Time Recurrent Regression Networks Using Multi-beam Sonar Images (실시간 순환 신경망 기반의 멀티빔 소나 이미지를 이용한 수중 물체의 추적에 관한 연구)

  • Lee, Eon-ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.

Development of Virtual Campus Information System using Interactive Virtual Reality Technology (상호작용 VR 기술을 이용한 가상 캠퍼스 안내 시스템 구현)

  • Kim, Jong-Nam;Na, Kil-Hang;Kim, Jong-Heon;Kim, Gyeong-Eop;Jung, Young-Kee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.779-784
    • /
    • 2008
  • 가상현실 시스템에서 체험자가 현실과 같은 몰입을 느끼기 위해서는 하드웨어를 통한 가상환경 구축과 체험자와의 상호작용이 중요하다. 본 논문에서는 위치 추적 시스템(Motion Tracking System), Wand(3D Mouse) 및 HoloPoint 등 다양한 VR 인터페이스를 통해 체험자의 움직임, 위치, 동작을 인식하고 대형 멀티 디스플레이 시스템을 통해 입체영상을 제공하는 가상환경을 구축하고 체험자가 원하는 정보를 상호작용(Interaction)으로 제공할 수 있는 가상 캠퍼스 안내 시스템을 구현하고자 한다. 가상 캠퍼스 구축은 캠퍼스의 지형, 건물 및 구조물들의 정확한 형상을 얻기 위해 3D 스캐너를 이용하였고 획득된 데이터는 일련의 과정들을 거쳐 3D 모델로 생성된다. 이렇게 생성된 모델을 재배치 및 최적화하기 위해 모델링 소프트웨어를 사용하였다. 구축된 가상 캠퍼스와 위치 추적 시스템 및 Wand의 연동을 위해 VR 프로그래밍 하여 체험자의 움직임 및 동작을 콘텐츠에 그대로 적용시켰다. 여기에 키오스크 유형의 HoloPoint를 이용하여 체험자의 손동작으로 상호작용하는 안내시스템도 구축하였다. 상호작용 가능한 가상캠퍼스 안내 시스템은 가상현실 시스템 구축에 대한 또 다른 방법과 활용 예를 제시함으로써 가상전시관 및 가상체험관 등에 활용될 수 있을 것으로 기대된다.

  • PDF

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis (3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘)

  • Lee, Bok Ju;Moon, Hyuck;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

Realization of Fairy Tale - Robot Aquarium Display System with Visitor Interaction (관람객과 상호 교감하는 전래동화-로봇의 수중무대 연출시스템 구현)

  • Shin, Kyoo-Jae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1180-1187
    • /
    • 2018
  • This paper had implemented the underwater stage through interaction with fish robots and visitors in the background of traditional fairy tales using 3D floating hologram in an aquarium. The recognition of the object position of the spectator and the underwater robot were performed using the color recognition algorithm. Also, the position tracking algorithm was proposed to follow the object of the visitor and the original fairy tale. This experimental system consists of fish robot, camera, KIOSK for underwater robot control and beam project for underwater imaging. This experiment was carried out by the National Busan Science Museum, and it had satisfied the performance of the underwater stage.

Autonomous Surveillance-tracking System for Workers Monitoring (작업자 모니터링을 위한 자동 감시추적 시스템)

  • Ko, Jung-Hwan;Lee, Jung-Suk;An, Young-Hwan
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.38-46
    • /
    • 2010
  • In this paper, an autonomous surveillance-tracking system for Workers monitoring basing on the stereo vision scheme is proposed. That is, analysing the characteristics of the cross-axis camera system through some experiments, a optimized stereo vision system is constructed and using this system an intelligent worker surveillance-tracking system is implemented, in which a target worker moving through the environments can be detected and tracked, and its resultant stereo location coordinates and moving trajectory in the world space also can be extracted. From some experiments on moving target surveillance-tracking, it is analyzed that the target's center location after being tracked is kept to be very low error ratio of 1.82%, 1.11% on average in the horizontal and vertical directions, respectively. And, the error ratio between the calculation and measurement values of the 3D location coordinates of the target person is found to be very low value of 2.5% for the test scenario on average. Accordingly, in this paper, a possibility of practical implementation of the intelligent stereo surveillance system for real-time tracking of a target worker moving through the environments and robust detection of the target's 3D location coordinates and moving trajectory in the real world is finally suggested.

Hybrid Real-time Monitoring System Using2D Vision and 3D Action Recognition (2D 비전과 3D 동작인식을 결합한 하이브리드 실시간 모니터링 시스템)

  • Lim, Jong Heon;Sung, Man Kyu;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.583-598
    • /
    • 2015
  • We need many assembly lines to produce industrial product such as automobiles that require a lot of composited parts. Big portion of such assembly line are still operated by manual works of human. Such manual works sometimes cause critical error that may produce artifacts. Also, once the assembly is completed, it is really hard to verify whether of not the product has some error. In this paper, for monitoring behaviors of manual human work in an assembly line automatically, we proposes a realtime hybrid monitoring system that combines 2D vision sensor tracking technique with 3D motion recognition sensors.

System Design and Evaluation of Digital Retrodirective Array Antenna for High Speed Tracking Performance (고속 추적 특성을 위한 디지털 역지향성 배열 안테나 시스템 설계와 특성 평가)

  • Kim, So-Ra;Ryu, Heung-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.623-628
    • /
    • 2013
  • The retrodirective array antenna system is operated faster than existing techniques of beamforming due to its less complexity. Therefore, it is effective for beam tracking in the environment of fast vehicle. On the other hand, it also has difficulty in estimating AOA according to multipath environment or multiuser signals. To improve the certainty of estimating AOA), this article proposes hybrid digital retrodirective array antenna systme combined with MUSIC algorithm. In this paper, the digital retrodirective array antenna system is designed according to the number of antenna array by using only one digital PLL which finds angle of delayed phase. And we evaluate the performance of the digital retrodirective array antenna for the high speed tracking application. Performance is studied by simulink when the speed of mobile is 300km/h and the distance between transmitter and receiver is 100m and then we have to confirm the performance of the system in multi path environment. As a result, the mean of AOA (Angle Of Arrival) error is $4.2^{\circ}$ when SNR is 10dB and it is $1.3^{\circ}$ when SNR is 20dB. Consequently, the digital RDA shows very good performance for high speed tracking due to the simple calculation and realization.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.