• 제목/요약/키워드: 3D Topology

검색결과 252건 처리시간 0.02초

SIMP 기반 절점밀도법에 의한 3 차원 위상최적화 (3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm)

  • 김철;팡난
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

COMPACTNESS OF A SUBSPACE OF THE ZARISKI TOPOLOGY ON SPEC(D)

  • Chang, Gyu-Whan
    • 호남수학학술지
    • /
    • 제33권3호
    • /
    • pp.419-424
    • /
    • 2011
  • Let D be an integral domain, Spec(D) the set of prime ideals of D, and X a subspace of the Zariski topology on Spec(D). We show that X is compact if and only if given any ideal I of D with $I{\nsubseteq}P$ for all $P{\in}X$, there exists a finitely generated idea $J{\subseteq}I$ such that $J{\nsubseteq}P$ for all $P{\in}X$. We also prove that if D = ${\cap}_{P{\in}X}D_P$ and if * is the star-operation on D induced by X, then X is compact if and only if * $_f$-Max(D) ${\subseteq}$X. As a corollary, we have that t-Max(D) is compact and that ${\mathcal{P}}$(D) = {P${\in}$ Spec(D)$|$P is minimal over (a : b) for some a, b${\in}$D} is compact if and only if t-Max(D) ${\subseteq}\;{\mathcal{P}}$(D).

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

위상최적화 기법을 이용한 사출 금형 최적 설계 (A Study on Injection Mold Design Using Topology Optimization)

  • 김미진;최재혁;백경윤
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.100-106
    • /
    • 2022
  • Topology optimization is applied for the optimal design of various products to ensure weight reduction and productivity improvement. Reducing the weight of the mold while maintaining its rigidity can ensure shortening of the production cycle, stabilization of the mold temperature, and reduction of mold material costs. In this study, a topology optimization technique was applied to the optimal design of the injection mold, and a topology-optimized model of the mold was obtained. First, the injection mold for the square specimens was modeled. Subsequently, a structural analysis was performed by implementing a load condition generated during the injection molding process. Topology optimization was performed based on the structural analysis results, and the models of the initial and topology-optimized designs were manufactured at 1/4 magnification using a 3D printer. Consequently, compared with the existing model, the weight of the topology-optimized model decreased by 9.8%, and the manufacturing time decreased by 7.61%.

D-band Stacked Amplifiers based on SiGe BiCMOS Technology

  • Yun, Jongwon;Kim, Hyunchul;Song, Kiryong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.276-279
    • /
    • 2015
  • This paper presents two 3-stage D-band stacked amplifiers developed in a $0.13-{\mu}m$ SiGe BiCMOS technology, employed to compare the conventional cascode topology and the common-base (CB)/CB stacked topology. AMP1 employs two cascode stages followed by a CB/CB stacked stage, while AMP2 is composed of three CB/CB stacked stages. AMP1 showed a 17.1 dB peak gain at 143.8 GHz and a saturation output power of -4.2 dBm, while AMP2 showed a 20.4 dB peak gain at 150.6 GHz and a saturation output power of -1.3 dBm. The respective power dissipation was 42.9 mW and 59.4 mW for the two amplifiers. The results show that CB/CB stacked topology is favored over cascode topology in terms of gain near 140 GHz.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

Topology Correction for Flattening of Brain Cortex

  • Kwon Min Jeong;Park Hyun Wook
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.73-86
    • /
    • 2005
  • We need to flatten the brain cortex to smooth surface, sphere, or 2D plane in order to view the buried sulci. The rendered 3D surface of the segmented white matter and gray matter does not have the topology of a sphere due to the partial volume effect and segmentation error. A surface without correct topology may lead to incorrect interpretation of local structural relationships and prevent cortical unfolding. Although some algorithms try to correct topology, they require heavy computation and fail to follow the deep and narrow sulci. This paper proposes a method that corrects topology of the rendered surface fast, accurately, and automatically. The proposed method removes fractions beside the main surface, fills cavities in the inside of the main surface, and removes handles in the surface. The proposed method to remove handles has three-step approach. Step 1 performs smoothing operation on the rendered surface. In Step 2, vertices of sphere are gradually deformed to the smoothed surfaces and finally to the boundary of the segmented white matter and gray matter. The Step 2 uses multi-resolutional approach to prevent the deep sulci from geometrical intersection. In Step 3, 3D binary image is constructed from the deformed sphere of Step 2 and 3D surface is regenerated from the 3D binary image to remove intersection that may happen. The experimental results show that the topology is corrected while principle sulci and gyri are preserved and the computation amount is acceptable.

내부 위상 형상에 따른 3D 프린트 복합재 방향타의 구조 성능 평가 (Evaluation of Structural Performance of 3D Printed Composite Rudder according to Internal Topology Shape)

  • 조영재;서형석;박희승
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.454-460
    • /
    • 2023
  • 최근 온실가스 배출량에 대한 규제가 높아지면서 IMO는 온실가스 배출량을 2050년까지 순 배출량 '0'을 목표로 하며 온실가스 규제를 강화하고 있다. 또한 조선/해양 분야에서는 추진 효율 향상, 구조 경량화와 같이 운항비 절감이 중요하다. 현재 이와 관련하여 구조 경량화와 고강성을 만족하기 위하여 3D 프린트 복합재료를 이용한 위상 최적화에 대한 연구가 수행되고 있다. 본 연구에서는 3D 프린트 복합재료를 활용하여 선박 구조물인 방향타의 내부에 3가지 위상 형상(육각형, 사각형, 삼각형)을 적용하였다. 방향타에 위상 형상을 적용하였을 때 적합한 형상을 알아보기 위해 구조해석을 수행했다. 선속 8 knots의 조건에서 타 각 0°에서 30°까지 10° 간격으로 CFD 해석을 수행하였으며, CFD 해석 결과를 바탕으로 하중조건을 설정하였다. 방향타 내부 위상 형상을 고려한 구조 해석 결과 삼각형, 사각형, 육각형 위상 형상 순으로 우수한 성능을 갖는 것을 확인하였다. 사각형 위상 형상을 가지는 방향타가 삼각형 위상 형상을 가지는 방향타 대비 78.5%의 무게를 가지며 경량화 측면을 고려하였을 때 사각형 위상 형상이 우수하다고 판단된다.

다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화 (Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes)

  • 김명규;구남서;서형석
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.211-216
    • /
    • 2023
  • 선박, 항공기 구조물을 설계할 때 경량화 및 강도를 만족할 수 있도록 설계하는 것은 중요하다. 현재, 경량화와 구조물의 강도를 만족시키기 위한 방법으로 3D 프린트 복합재료를 이용한 위상 최적화에 관련된 연구가 활발히 이루어지고 있다. 본 연구에서는 항공기 또는 무인기의 부품 중 하나인 조종면에 대한 3D 프린트 복합재료의 적용 가능성을 분석하기 위해 구조해석을 수행했다. 조종면의 내부 위상 형상에 대해 3가지(육각형, 사각형, 삼각형) 형상을 고려하여 굽힘 하중에 대한 조종면의 최적의 위상 형상을 분석하였다. 또한 3D 프린트 복합재료의 4가지 강화재(탄소섬유, 유리섬유, 고강내열유리섬유, 케블라)를 적용했을 때의 조종면의 굽힘 강도를 분석하였다. 3점 굽힘 실험결과와 구조해석 결과를 비교한 결과, 탄소섬유와 케블라로 제작된 육각형의 위상 형상을 갖는 조종면이 우수한 성능을 갖는 것을 확인하였다. 이를 통해 조종면에 대해 3D 프린트 복합재를 충분히 적용 가능할 것으로 판단된다.