• Title/Summary/Keyword: 3D Surface-Strain

Search Result 143, Processing Time 0.033 seconds

Fracture Analysis of a Spindle in the X-Lift (X 리프트 스핀들의 파괴해석)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • One of the two spindles in the X-lift fractured suddenly during normal operation. The fracture occurred at the notch where the bending moment might be the maximum. Macrofractographic features associated with rotating-bending fatigue are evident on the fracture surface. The 3-D finite element analysis of the X-lift reveals that the spindle rotated under bending. The measured surface strain of the spindle varies cyclically as the spindle rotates. It supports that the spindle rotated under bending. The X-lift is not perfectly symmetrical with respect to both the horizontal and the vertical plane. The slightly unsymmetrical deformation can cause the bending of the spindle.

Characteristics and breeding of a new variety Pleurotus eryngii, Gongi No.3 (신품종 큰느타리버섯 '곤지3호' 육성 및 특성)

  • Ha, Tai-Moon;Ju, Young-Cheol;Jeon, Dae-Hoon;Choi, Jong-In;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.9 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • We bred a new strain of Pleurotus eryngii. It's name is 'Gongi No.3' and it was bred by mating monokaryotic strain isolated from E08-5D2 and dikaryotic strain GMPE25016 from 2006 to 2010 in Mushroom Research Station, Gyonggi province A.R.E.S. The characteristics of a new strain 'Gongi No.3' is as follows ; The optimum temperature for mycelium growth was from 26 to 29 degrees celsius on PDA medium and those for the premodium formation and the growth of fruit body were from 14 to 18 degrees celsius. The period of spawn running was around 30days at 22 degrees celsius and the period taken from scratching old spawn to make premodium were 8 days. The color degree of cap surface was measured by color difference meter and that of a new strain 'Gongi No.3' was 54.4 by L-value. it was seem to be dark, compared with 'Keunneutari No.2'. The hardness of fruit body of a new strain was higher than 'Keunneutari No.2'. The yield was about 180g per bottle(1100cc). it was 10g more than 'Keunneutari No.2'.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Processing and Properties of RAINBOW Piezoelectric Actuator (RAINBOW 압전 액츄에이터의 제조와 물성)

  • Paik Jong-Hoo;Lim Eun-Kyeong;Kim Chang-il;Lee Mi-Jae;Jee Mi-Jung;Choi Byung-Hyun;Kim Sei-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2006
  • RAINBOW(Reduced And Internally Biased Oxide Wafers) are a new class of high-displacement, piezoelectric actuator produced by selectively removing oxygen from one surface of ceramic using a high-temperature chemical reduction process. In this paper, RAINBOW actuator materials of $0.4Pb(Ni_{1/3}Nb_{2/3})O_3-0.6Pb(Zr_{x}Ti_{1-x})O_3$ ceramics were prepared. Its dielectric and piezoelectric properties were investigated in the vicinity of MPB. The piezoelectric properties showed the maximum value of ${\epsilon}r$ = 4871, $d_{33}$ = 610 ($10^{-12}$ m/V), $d_{31}$ = -299 ($10^{-12}$ m/V), $k_{33}$ = $71\%$, Qm = 70, in $0.4Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.6Pb(Zr_{405}Ti_{595})O_3$ composition sintered at $1250^{\circ}C$. The strain - electric field characteristics of RAINBOW actuator were significantly improved comparison with the conventional bulk actuator. The prepared RAINBOW actuator showed about $390\;{\mu}m/100\;V$ displacement.

A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack (작은 표면균열의 성장특성에 의한 수명예측)

  • Suh, Chang-Min;Lim, Chang-Soon;Gang, Yong-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack (작은 표면균열의 성장특성에 의한 수명예측)

  • Suh, Chang-Min;Lim, Chang-Soon;Gang, Yong-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

Identification of an Actinomycetes Strain, MSA-1, Originated from Sponge, Halichondria okadai, and its Antimicrobial Component (검정해면으로부터 항균성을 가진 방선균의 분리 동정 및 항균물질의 구조)

  • LEE Jong-Soo;CHOI Jong-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.516-522
    • /
    • 1998
  • An Actinomycetes strain, MSA-1, containing antimicrobial component was isolated from the black sponge, Halichondzia okadai, and was identified to a genus level by morphological and chemotaxonornic methods. The gray colored spores were oval type with smooth surface and formed flexibilis spore chains. The cell wall of this strain was type I containing D-aminopimellic acid (D-DAP) and no specific sugar was detected. Phospholipid of the cell membrane was PII type including phophoethanolamine and the major fatty acids of total lipid were branched anteiso-15 : 0, iso-16 : 0, 16 : 0 and iso-17 ; 0. From these results and other characteristics described in the Bergey's Manual, this strain was identificated as a Streptomyces sp. Meanwhile, 10mg of pale yellow colored antimicreobial component was isolated by HPLC method from the cultured Streptomyces sp. (70g of cryophillized mycellis). By crystallographyc analysis, HIRESMS and NMR assignment, the antimicrobial component produced from the strain MSA-1 was elucidated as the staurosporine (indolo[2,3-a]carbazole alkaloid).

  • PDF

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Pavement Response in Flexible Pavements using Nonlinear Tire Contact Pressure and Measured Tire Contact Area (타이어의 접지 면적과 비선형 접지압력을 고려한 연성포장내의 거동 분석)

  • Jo, Myoung Hwan;Kim, Nakseok;Jeong, Jin-Hoon;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.601-608
    • /
    • 2006
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. In this study, finite element analysis was used to identify the three-dimension states using nonlinear tire contact pressure and measured tire contact area. Measured tire contact area was quite different from the assumed tire contact area, and it resulted in different strain states under the tire. At the surface course, considering tire rib and nonlinear tire pressure, the pavement response presented accurate data compared to the predicted one. However, at the binder course, tire effects were generally negligible and it showed that the predicted pavement response was different compared to the measured one.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.