• Title/Summary/Keyword: 3D Structured Object

Search Result 25, Processing Time 0.028 seconds

Three Dimensional Geometric Feature Detection Using Computer Vision System and Laser Structured Light (컴퓨터 시각과 레이저 구조광을 이용한 물체의 3차원 정보 추출)

  • Hwang, H.;Chang, Y.C.;Im, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-390
    • /
    • 1998
  • An algorithm to extract the 3-D geometric information of a static object was developed using a set of 2-D computer vision system and a laser structured lighting device. As a structured light pattern, multi-parallel lines were used in the study. The proposed algorithm was composed of three stages. The camera calibration, which determined a coordinate transformation between the image plane and the real 3-D world, was performed using known 6 pairs of points at the first stage. Then, utilizing the shifting phenomena of the projected laser beam on an object, the height of the object was computed at the second stage. Finally, using the height information of the 2-D image point, the corresponding 3-D information was computed using results of the camera calibration. For arbitrary geometric objects, the maximum error of the extracted 3-D feature using the proposed algorithm was less than 1~2mm. The results showed that the proposed algorithm was accurate for 3-D geometric feature detection of an object.

  • PDF

Development of 3D Scanner Based on Laser Structured-light Image (레이저 구조광 영상기반 3차원 스캐너 개발)

  • Ko, Young-Jun;Yi, Soo-Yeong;Lee, Jun-O
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

Development of Color 3D Scanner Using Laser Structured-light Imaging Method

  • Ko, Youngjun;Yi, Sooyeong
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.554-562
    • /
    • 2018
  • This study presents a color 3D scanner based on the laser structured-light imaging method that can simultaneously acquire 3D shape data and color of a target object using a single camera. The 3D data acquisition of the scanner is based on the structured-light imaging method, and the color data is obtained from a natural color image. Because both the laser image and the color image are acquired by the same camera, it is efficient to obtain the 3D data and the color data of a pixel by avoiding the complicated correspondence algorithm. In addition to the 3D data, the color data is helpful for enhancing the realism of an object model. The proposed scanner consists of two line lasers, a color camera, and a rotation table. The line lasers are deployed at either side of the camera to eliminate shadow areas of a target object. This study addresses the calibration methods for the parameters of the camera, the plane equations covered by the line lasers, and the center of the rotation table. Experimental results demonstrate the performance in terms of accurate color and 3D data acquisition in this study.

Development of the Computer Vision based Continuous 3-D Feature Extraction System via Laser Structured Lighting (레이저 구조광을 이용한 3차원 컴퓨터 시각 형상정보 연속 측정 시스템 개발)

  • Im, D. H.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • A system to extract continuously the real 3-D geometric fearture information from 2-D image of an object, which is fed randomly via conveyor has been developed. Two sets of structured laser lightings were utilized. And the laser structured light projection image was acquired using the camera from the signal of the photo-sensor mounted on the conveyor. Camera coordinate calibration matrix was obtained, which transforms 2-D image coordinate information into 3-D world space coordinate using known 6 points. The maximum error after calibration showed 1.5 mm within the height range of 103mm. The correlation equation between the shift amount of the laser light and the height was generated. Height information estimated after correlation showed the maximum error of 0.4mm within the height range of 103mm. An interactive 3-D geometric feature extracting software was developed using Microsoft Visual C++ 4.0 under Windows system environment. Extracted 3-D geometric feature information was reconstructed into 3-D surface using MATLAB.

  • PDF

Profilometry based on Structured Illumination with Hypercentric Optics (하이퍼센트릭 광학계를 이용한 구조 조명 형상 측정 방법)

  • Kim, Sungmin;Cho, Minguk;Lee, Maengjin;Hahn, Joonku
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1089-1093
    • /
    • 2013
  • Depth extraction using the structured illumination method is popularly applied since it has the benefit of measuring the object without contact. With multiple spatial frequencies and phase-shifting techniques, it is possible to extract the depth of objects with large discontinuity. For applications such as 3D (Three Dimensional) displays, 3D information of the object is required and is useful if corresponding to each view of the display. For this purpose, hypercentric optics is appropriate to measure the depth information of an object with a large field of view that is applicable for a 3D display. By experiment, we present the feasibility for phase-shifting profilometry using hypercentric optics to obtain the depth information of an object with the field of view appropriate for a 3D display.

User-friendly 3D Object Reconstruction Method based on Structured Light in Ubiquitous Environments (유비쿼터스 환경에서 구조광 기반 사용자 친화적 3차원 객체 재구성 기법)

  • Jung, Sei-Hwa;Lee, Jeongjin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.523-532
    • /
    • 2013
  • Since conventional methods for the reconstruction of 3D objects used a number of cameras or pictures, they required specific hardwares or they were sensitive to the photography environment with a lot of processing time. In this paper, we propose a 3D object reconstruction method using one photograph based on structured light in ubiquitous environments. We use color pattern of the conventional method for structured light. In this paper, we propose a novel pipeline consisting of various image processing techniques for line pattern extraction and matching, which are very important for the performance of the object reconstruction. And we propose the optimal cost function for the pattern matching. Using our method, it is possible to reconstruct a 3D object with efficient computation and easy setting in ubiquitous or mobile environments, for example, a smartphone with a subminiature projector like Galaxy Beam.

Process Annotation for Recording the Manipulation of 3D Structured Models (3D 구조물의 조작과정 기록을 위한 어노테이션 기법)

  • Lee, Gui-Hyun;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.381-390
    • /
    • 2007
  • 3D object contents are used for various applications in the Web virtual space, where the main concerns are to navigate the 3D virtual space and visualize 3D objects. The techniques to manipulate 3D objects like disassembling and assembling and to record the manipulation process are the very first step. Until now, we can record only the result of 3D object manipulation. Thus, we have tried to study the representation technique to record meaningfully and replay the manipulation process of 3D structured objects. We analyzed the structures and their relations between components to construct 3D objects that are described in XML or VRML. Compared to the previous method, we studied a XML based annotation technique to record and store selectively by user. This technique makes 3D structured objects be used in the various applications by the selective recording and also selective replaying.

  • PDF

The Structured Grid Pattern Calibration Based On Triangulation Method (삼각법기반 구조화된 격자 패턴 캘리브레이션)

  • 주기세
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1074-1079
    • /
    • 2004
  • So far, many sensors such as a structured grid pattern generator, a laser, and CCD camera to obtain 3D information have been used, but most of algorithms for a calibration are inefficient since a huge memory and experiment time are required. In this paper, the calibration algorithm of a structured grid pattern based on triangulation method is introduced to calculate 3D information in the real world. The beams generated from structured grid pattern generator established horizontally with the CCD camera are projected on the calibration plat. A CCD camera measures the intersection plane of a projected beam and an object plane. The 3D information is calculated using measured and calibration datum. This proposed method in this paper has advantages such as a memory saving and an efficient experimental time since the 3D information is obtained simply the triangulation method.

3D Reconstruction using multi-view structured light (다시점 구조광을 이용한 3D 복원)

  • Kang, Hyunmin;Park, Yongmun;Seo, Yongduek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.288-289
    • /
    • 2022
  • In this paper, we propose a method of obtaining high density geometric information using multi-view structured light. Reconstruction error due to the difference in resolution between the projector and the camera occurs when reconstruction a 3D shape from a structured light system to a single projector. This shows that the error in the point cloud in 3D is also the same when reconstruction the shape of the object. So we propose a high density method using multiple projectors to solve such a reconstruction error.

Development of a Remote Object's 3D Position Measuring System (원격지 물체의 삼차원 위치 측정시스템의 개발)

  • Park, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.60-70
    • /
    • 2000
  • In this paper a 3D position measuring device that finds the 3D position of an arbitarily placed object using a camersa system is introduced. The camera system consists of three stepping motors and a CCD camera and a laser. The viewing direction of the camera is controlled by two stepping motors (pan and tilt motors) and the direction of a laser is also controlled by a stepping motors(laser motor). If an object in a remote place is selected from a live video image the x,y,z coordinates of the object with respect to the reference coordinate system can be obtained by calculating the distance from the camera to the object using a structured light scheme and by obtaining the orientation of the camera that is controlled by two stepping motors. The angles o f stepping motors are controlled by a SGI O2 workstation through a parallel port. The mathematical model of the camera and the distance measuring system are calibrated to calculate an accurate position of the object. This 3D position measuring device can be used to acquire information that is necessary to monitor a remote place.

  • PDF