• 제목/요약/키워드: 3D Structural Modeling

검색결과 373건 처리시간 0.026초

연성 막구조의 파라메트릭 설계 시스템 개발 (Development of a Parametric Design System for Membrane Structures)

  • 최현철;이시은;김치경
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

차체 강성해석을 위한 구조용 접착제 해석모델링 연구 (Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile)

  • 서성훈;주재갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

선박용 유압 조타 시스템의 구조적 안전성 평가 (Structural Safety Evaluation of Hydraulic Steering System for Ship)

  • 이문희;손인수;양창근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

BIM 기반의 철골접합부 모델링 자동화에 관한 연구 (A Study on the Automation of the Connection modeling for Steel Structures based on BIM)

  • 엄진업;신태송
    • 한국강구조학회 논문집
    • /
    • 제22권1호
    • /
    • pp.99-108
    • /
    • 2010
  • 본 연구는 구조상세설계와 모델링 단계에서 활용 가능한 철골 접합부 모델링 자동화 모듈의 개발을 목적으로 한다. 이를 위해 접합부의 구조해석 결과를 3D 모델링의 입력 변수와 표준접합상세지침을 고려하여 라이브러리 D/B로 구축하였다. 구축된 라이브러리 D/B를 접합부 3D 모델링 단계에서 활용하기 위하여 상용 S/W에서 제공하는 OpenAPI 함수를 이용하여 접합부 자동 생성 모듈을 개발하였다. 개발된 모듈을 검증하기 위해 6층 규모의 철골 오피스 구조물을 대상으로 접합부 모델링을 수행하였으며, 접합부 모델링 과정에 대해 기존 프로세스와 연구 프로세스의 비교를 통해 적용성과 효율성을 검증하였다.

조선 기본구조설계 단계에서의 3D CAD/CAE 인터페이스 개발 (Development of 3D CAD/CAE Interface in Initial Structural Design Phase of Shipbuilding)

  • 손명조;이정렬;박호균;김종오;우정재;이정현
    • 한국CDE학회논문집
    • /
    • 제21권2호
    • /
    • pp.186-195
    • /
    • 2016
  • The finite element modeling of a ship for hull structural analysis on the basis of new harmonized common structural rules (CSR-H) is to be extended to the cargo holds in fore and after body of a ship. Unlike the parallel middle-body where the external and internal features of hull are equal along to the longitudinal direction of a ship, in fore and after body, the external and internal features of hull vary linearly or even irregularly in forms of a surface or a curve along to the longitudinal direction of a ship. Thus, it needs lots of design man-hours for the modeling for structural analysis. In order to save man-hours in initial structural design phase of a ship, the specified 3D CAD system has been adopted in shipbuilding industry. Through the interface between CAD and CAE (rule scantling and direct strength assessment), design man-hour in initial design phase can be saved even under the environment of CSR-H.

매개변수식 기하 표현법에 의한 3차원 터널 모델링 (3D Tunnel Modeling by Parametric Representation of Geometry)

  • 이형우;신대석
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.33-42
    • /
    • 2002
  • 본 연구에서는 3차원 곡면의 매개변수식 기하 표현법과 계층적/관계형 자료 구조를 이용하여 3차원 터널을 자동으로 모델링할 수 있는 방안을 제시한다. 매개변수식 기하 표현법과 계층적/관계형 자료 구조의 이용은 3차원 터널 표현의 일반화와 확장성을 제공하며 해석을 위한 터널 구조의 특성을 정확하게 처리할 수 있게 한다. 그리고 터널 곡면의 곡률 특징을 이용하여 2차원 요소망 생성 알고리즘을 사용하여 3차원 요소망을 자동으로 생성할 수 있다.

UAV와 BIM 정보를 활용한 시설물 외관 손상의 위치 측정 방법 (Structural Damage Localization for Visual Inspection Using Unmanned Aerial Vehicle with Building Information Modeling Information)

  • 이용주;박만우
    • 한국BIM학회 논문집
    • /
    • 제13권4호
    • /
    • pp.64-73
    • /
    • 2023
  • This study introduces a method of estimating the 3D coordinates of structural damage from the detection results of visual inspection provided in 2D image coordinates using sensing data of UAV and 3D shape information of BIM. This estimation process takes place in a virtual space and utilizes the BIM model, so it is possible to immediately identify which member of the structure the estimated location corresponds to. Difference from conventional structural damage localization methods that require 3D scanning or additional sensor attachment, it is a method that can be applied locally and rapidly. Measurement accuracy was calculated through the distance difference between the measured position measured by TLS (Terrestrial Laser Scanner) and the estimated position calculated by the method proposed in this study, which can determine the applicability of this study and the direction of future research.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Structural Design and Analysis for 3D Ultrasonic Anemometer

  • Kim, Kyung-Won;Choi, Jae-Yeong;Lee, Woo-Jin;Lee, Seon-Gil
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.86-90
    • /
    • 2016
  • A 3D ultrasonic anemometer measures the direction and velocity of wind in a 3D space. The 2D ultrasonic anemometers developed by different manufacturers do not differ significantly in terms of their form or structure. The 3D ultrasonic anemometers, on the other hand, have more diverse forms than their 2D counterparts depending on the measurement algorithms and methods. Designing and reviewing the structure at the initial stage and defining its performance objectives are time-consuming processes. The process can be made cost-effective and time-saving if the validity is tested by model design and structural interpretation, and the structure is designed to withstand high wind velocities. This study presents the results of a 3D ultrasonic anemometer on real sample data by using a 3D modeling program, CATIA, for ultrasonic anemometer modeling.

3차원 교량정보 모델링에 따른 IFC 기반 트러스교 구조해석정보 자동생성 모듈 (Automatic Generation Module of IFC-based Structural Analysis Information Model Through 3-D Bridge Information Modeling)

  • 이진훈;김효진;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.809-812
    • /
    • 2007
  • Automatic generation method of structural analysis model data for a truss bridge is presented through 3-D bridge information modeling based on Industry Foundation Classes(IFC). The mapping schema is proposed between a steel bridge information model based on STEP and a truss bridge information model based on the IFC. The geometry information from mapping is presented by IFC model, and SAP 2000 that can import the IFC file performs the structural analysis. Numerical analysis for a truss bridge is performed in this paper.

  • PDF