• 제목/요약/키워드: 3D Solid Element

Search Result 189, Processing Time 0.027 seconds

콘크리트 슬래브 궤도의 3차원 거동해석 (3- D Analysis of Concrete Slab Track System)

  • 김정일;장승엽
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석 (Numerical Analysis on the compressive behavior of closed-cell Al foam)

  • 전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

Progressive collapse analysis of a RC building subjected to blast loads

  • Almusallam, T.H.;Elsanadedy, H.M.;Abbas, H.;Alsayed, S.H.;Al-Salloum, Y.A.
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.301-319
    • /
    • 2010
  • The paper seeks to explore some aspects of the current state of knowledge on progressive collapse in the technical literature covering blast loads and structural analysis procedure applicable to reinforced concrete (RC) buildings. The paper describes the progressive collapse analysis of a commercial RC building located in the city of Riyadh and subjected to different blast scenarios. A 3-D finite element model of the structure was created using LS-DYNA, which uses explicit time integration algorithms for solution. Blast loads were treated as dynamic pressure-time history curves applied to the exterior elements. The inherent shortcomings of notional member removal have been taken care of in the present paper by simulating the damage of structural elements through the use of solid elements with the provision of element erosion. Effects of erosion and cratering are studied for different scenarios of the blast.

재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구 (An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties)

  • 김도연;장일영
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

고상단결정법으로 성장시킨 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ 압전단결정의 물성평가 (Characterization of the Material Properties of 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ Single Crystals Grown by the Solid-State-Crystal-Growth Method)

  • 이상한;노용래
    • 한국음향학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2004
  • 본 연구에서는 고상단결정법으로 성장시킨 PMN-32%PT 단결정의 모든 물성을 공진법을 이용하여 측정하였다. tetragonal 결정구조의 PMN-PT는 독립적인 물성으로 6개의 탄성상수, 3개의 압전상수, 2개의 유전상수를 가진다. 이상의 값들을 서로 다른 형태를 가진 6종류의 시편을 만들어 임피던스 분석기를 이용하여 각각의 시편의 진동모드별 전기임피던스를 측정하여 구하였다. 측정결과 일반 압전세라믹 보다 큰 전기기계결합계수 k/sub 33/ (∼85%)과 압전계수 d/sub 33/ (∼1200pC/N)을 가짐을 확인하였다. 측정한 값의 타당성은 측정시편의 유한요소해석을 통한 임피던스 스펙트럼과 상용 d/sub 33/ -meter측정결과와의 비교를 통해 확인하였다.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Prediction and improvement of the solid particles transfer rate for the bulk handing system design of offshore drilling vessels

  • Ryu, Mincheol;Jeon, Dong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.964-978
    • /
    • 2015
  • Numerous experiments with a scaled pilot facility were carried out to compare the relative bulk transfer performance of three special devices for applications to drilling systems. The pipe diameter for bulk transportation was 3 in., which corresponds to around half of the actual system dimensions. Two different pressures, 3 and 4 bar, were considered to check the relative performance under different pressure conditions at a bulk storage tank. And to make a practical estimation method of the bulk transfer rate at the early design stages of the bulk handling system, a series of experiments were conducted for real scaled bulk handing systems of two drilling vessels. The pressure drops at each pipe element as well as the bulk transfer rates were measured under different operating conditions. Using the measured results, the friction factor for each pipe element was calculated and a procedure for transfer rate estimation was developed. Compared to the measured transfer rate results for other drilling vessels, the estimated transfer rates were within a maximum 15% error bound.

분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Distributed Load on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.19-26
    • /
    • 2008
  • This study has been carried out to investigate the dynamic characteristics of RC slabs. For this purpose, the 20-node solid element has been used to discretize the RC slabs into two parts of concrete and rebar. The material non-linearity considering elasto-visco plastic model and the smeared crack model have been adopted in the finite element formulation. The applied load can handle step load, load intensity of harmonic load, area of distributed load and frequency. The frequency of harmonic load has an significant effect on dynamic behaviour in terms of displacement. As the frequency is increased, the effect of load amplitude is more serious. Especially, if the frequency of harmonic load exceeds 30 Hz, it is noted that the displacement by harmonic load is greater than that by step load. In case of harmonic load, the damping effect shows no certain tendency with respect to frequency of load. In details, the damping is effective when the frequency of harmonic load is 2 Hz, but there is no consistent tendency according to damping ratio. The dynamic response when the frequency of harmonic load is 3 Hz shows same result for undamped case as well as for damped case with 5% damping ratio. It is also noted that we can get the largest deflection for damped case with 1% damping ratio. However, there is not any damping effect when the frequency of harmonic load is greater than 4 Hz.

점성 유동장에서 운동하는 구조체의 유탄성 해석 (Fluid-Structure Interaction Analysis for Structure in Viscous Flow)

  • 노인식;신상묵
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.

Fe가 첨가된 과공정 Al-Si-Fe합금 압출재의 기계적특성 및 미세조직에 관한 연구 (Effect of Fe Addition on Mechanical Properties and Microstructure of As-Extruded Hypereutectic Al-Si-Fe Alloy)

  • 이세동;김덕현;백아름;임수근
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.123-129
    • /
    • 2019
  • Hypereutectic Al-Si alloys have been widely utilized for wear-resistant components in the automotive industry. In order to expand the application of Hypereutectic Al-Si alloys, the addition of alloying elements forming a stable precipitate at high temperature is required. Thermally stable inter metallic compounds can be formed through the addition of transition elements such as Fe, Ni to Al alloys. However, the amount of transition element to be added to Al alloys is limited due to their low solid solubility. Also, hypereutectic Al-Si-Fe alloys form coarse primary Si phases and needle-shaped intermetallic compounds during solidification in the general casting processes. In this study, the effects of the destruction of Intermetallic compound and Si phase are investigated via hot extrusion. Both the microstructure and mechanical properties are discussed under different extrusion conditions.