• Title/Summary/Keyword: 3D Scanning System

Search Result 439, Processing Time 0.025 seconds

3D Scanning Embedded System Design (3D 스캐닝 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • It is the approach of embedded system design that finds 3D scanning technology to analyze a real object or environment to collect data on its shape and appearance. 3D laser scanning developed during the last half of 20th century in an attempt to accurately recreate the surfaces of various objects. 1960s, early scanners used lights, cameras, and projectors to carry out the scanning in the lacks of performance which encountered many difficulties with shiny, mirroring, or transparent objects. The 3D scanning technology has leveled-up with helpful of embedded software platform research and design. In this paper, First we designed the hardware of laser/camera setup and turntable moving part which is the base of object. Second, we introduced the process of scanning 3D data with software and analyzed the resulting scanned image on the web server. Last, we made the 3D scanning embedded device with 3D printing model and experimented the 3D scanning performance with Raspberry Pi.

Enhancement of 3D Scanning Performance by Correcting the Photometric Distortion of a Micro Projector-Camera System (초소형 카메라-프로젝터의 광학왜곡 보정을 이용한 위상변이 방식 3차원 스캐닝의 성능 향상)

  • Park, Go Gwang;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • A distortion correction technique is presented to enhance the 3D scanning performance of a micro-size camera-projector system. Recently, several types of micro-size digital projectors and cameras are available. However, there have been few effort to develop a micro-size 3D scanning system. We develop a micro-sized 3D scanning system which is based on the structured light technique. Three images of phase-shifted sinusoidal patterns are projected, captured, and analyzed by the system to reconstruct 3D shapes of very small objects. To overcome inherent optical imperfection of the micro 3D sensor, we correct the vignetting and blooming effects which cause distortions in the phase image. Error analysis and 3D scanning results on small real objects are presented to show the performance of the developed 3D scanning system.

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Comparison of Size between direct-measurement and 3D body scanning (중국 성인여성의 직접계측과 3D Body scanning 치수 비교 연구)

  • Cha, Su-Joung
    • Journal of Fashion Business
    • /
    • v.16 no.1
    • /
    • pp.150-159
    • /
    • 2012
  • This study intend to analyze differences between 3D body scanning sizes and direct measurement sizes of same subjects. The subjects of study are female students of university in China. 3D data analyze as a 3D Body Measurement Soft System. The conclusion found is as below: In case of circumferences, error between direct-measurement size and 3D body scanning size is from 4.9mm to 62.2mm. The neck circumference size of directmeasurement is bigger than 3D body scanning size. The height error range is from 0.6mm to 51mm. Height of underbust, waist and hip are that direct-measurement sizes are higher than 3D body scanning sizes. Gap of width is from 3.8mm to 21.9mm. The gap range is too narrow relatively to others. Only direct-measurement size of neck width is wider than 3D body scanning size. Error range of length is from 0.3mm to 41.8mm. 3D body scanning sizes of lateral neck to waistline, upperarm length, arm length, neck shoulder point to breast point, shoulder center point to breast point, lateral shoulder to breast point are longer than direct-measurement sizes. They have a negative margin of error. I intend to set up same measurement point between direct-measurement and 3D body scanning but they have some errors because direct-measurement point is applied by a person. 3D body scanning measurement point is settled by automatic system. A measurement point of direct-measurement and 3D body scanning isn't unite. So we need to make a standard of setting up measurement points.

A Study on the 3D Scanning of Fashionable Textile Materials - Ripple-finished Cotton Fabric and Shrink-proof Finished/Felted Wool Fabric -

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.101-112
    • /
    • 2011
  • Three-dimensional(3D) virtual clothing simulation system may require the use of physical, mechanical, and configurational data in order to mimic the actual clothing with high degree of realism. Therefore the 3-dimensional scanning system based on optical methods was adopted to extract the 3-dimensional data of the fabric surface. In this study, the appearances of the 3-dimensionally transformed textile fabrics via several finishing procedures were investigated using a 3D scanning system. The wool gauze fabrics treated with the shrink-proof finishing and the felting process showed height changes up to 4.5mm. The 3-dimensional configuration may be objectively described by the use of mesh generation from the scanned output. The generated mesh information may further be utilized in the 3D virtual clothing simulation system for accurate description of the fashionable textile materials used in the simulation system.

Three-Dimensional Television using Optical Scanning Holography

  • Poon, Ting-Chung
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.12-16
    • /
    • 2002
  • We first review a real-time three-dimensional (3-D) holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for 3-D holographic television (TV) display with a wide-angle view of a 3-D image, and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV system.

3D Extraction Method Using a Low Cost Line Laser (라인레이저를 이용한 3D 모델 추출 방법)

  • Yun, Chun Ho;Kim, Tae Gi;Cho, Yong Wook;Nam, Gi Won;Yim, Choong Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.108-113
    • /
    • 2017
  • In this paper, we proposed a three-dimensional(3D) scanning system based on laser vision technique for 3D model reconstruction. The proposed scanning system consists of line laser, camera, and turntable. We implemented the 3D scanning system using low quality elements. Although these are low quality elements, we reduced the 3D data reconstruction errors greatly using two methods. First, we developed a maximum brightness detection algorithm. This algorithm extracts the maximum brightness of the line laser to obtain the shape of the object. Second, we designed a new laser control device. This device helps to adjust the relative position of the turntable and line laser. These two methods greatly reduce the measuring noise. As a result, point cloud data can be obtained without complicated calculations.

Development of a 3D Whole Body Scanner for Reconstructing Human Body based on Contour Triangulation Technique (인체 모델 생성을 위한 등고선 삼각분할 기반의 3차원 전신 스캐너 개발)

  • 최영규;구본기;최병태
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.397-407
    • /
    • 2003
  • In the past decade, significant effort has been made toward increasing the accuracy and robustness in the three-dimensional scanning methods. In this paper, we introduce a novel laser-stripe, 3D scanning system which was developed to digitize a whole human body. We also suggest a new semi-automatic contour registration method to generate robust contours from the 3D data points acquired by our scanning system. A contour triangulation based surface modoling method was also introduced. Experimental result shows that our system is very robust and efficient for reconstructing overall 3D surface model of a human body.

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.