• Title/Summary/Keyword: 3D S electrode

Search Result 188, Processing Time 0.032 seconds

Study of a High Energy Density Battery Using a 3D Sulfur Electrode (3D S 전극을 활용한 고에너지밀도 전지 연구)

  • Song, Da-in
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • The possibility of conversion to the RC-MAT propulsion system (gasoline engine → electric motor) was studied. However, as commercial battery capacities are low. it is not possible to change the propulsion system. Nevertheless, development of nex-generation batteries is necessary for high capacity and high energy density. Although Li/S batteries are theoretically suitable as new generation batteries, these batteries are not composed of only Li and S. Hence, ensuring high energy density can be difficult. Moreover, electrolytes are important components in the study of energy density; hence, the battery by Li2S8 Molarity was sorted. There are no studied on its various electrode components. In this study, a Li/S battery was fabricated using an assorted 3D sulfur electrode of high energy density and its electrochemical properties were studied. The Li/S battery has a high energy density of 468 Wh/kg at 1.28 M Li2S8 (A805-1.28). Its capacity rapidly decreased after 1 cycle with more than 1 M Li2S8.

Control of Connectivity of Ni Electrode with Heating Rates During Sintering and Electrical Properties in BaTiO3 Based Multilayer Ceramic Capacitors

  • Yoon, J.R.;Shin, D.S.;Jeong, D.Y.;Lee, H.Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.181-184
    • /
    • 2012
  • $BaTiO_3$ based multilayer ceramic capacitors with Ni electrodes can be explained as 2-2 composites with different thermal expansion coefficient and sintering behaviors. To achieve the high capacitance and reliability of MLCCs, a homogenous Ni electrode configuration with high connectivity is required. We controlled the heating rates during sintering to achieve densification by suppressing grain growth. Experimental results revealed that a large heating rate gave high connectivity of Ni electrode, high capacitance, small dissipation factor, high breakdown voltage, and high reliability of MLCC chips.

Electrical characteristics of 30MHz resonator using $PbTiO_3$ system ceramics ($PbTiO_3$계 세라믹스을 이용한 30MHz 레조네이터의 전기적특성)

  • Oh, D.O.;Yoo, J.H.;Park, C.Y.;Yoon, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.71-74
    • /
    • 2002
  • In this study, resonant characteristics of $Pb_{0.88}(La_{0.6}Nd_{0.4})_{0.08}(Mn_{1/3}Sb_{2/3})_{0.02}Ti_{0.98}O_3$ ceramics were investigated with the variations of electrode radius size for manufacturing the best 30MHz SMD type ceramic resonator with the size of $3.7{\times}3.1{\times}0.255mm^3$. Physical properties were proper for appling for 30MHz SMD type ceramic resonator. In third overtone thickness vibration mode, with increasing electrode radius size, resonant resistant($Z_r$) was decreased gradually. Mechanical quality factor($Q_{mt3}$) and dynamic range(D.R) showed the maximum value of 2,283, 47.1dB respectively, at 0.74mm electrode radius size.

  • PDF

Antireflective ZTO/Ag bilayer-based transparent source and drain electrodes for highly transparent thin film transistors

  • Choe, Gwang-Hyeok;Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We reported on antireflective ZnSnO (ZTO)/Ag bilayer and ZTO/Ag/ZTO trilayer source/drain (S/D) electrodes for all-transparent ZTO channel based thin film transistors (TFTs). The ZTO/Ag bilayer is more transparent (83.71%) and effective source/drain (S/D) electrodes for the ZTO channel/Al2O3 gate dielectric/ITO gate electrode/glass structure than ZTO/Ag/ZTO trilayer because the bottom ZTO layer in the trilayer increasea contact resistance between S/D electrodes and ZTO channel layer and reduce the antireflection effect. The ZTO based all-transparent TFTs with ZTO/Ag bilayer S/D electrode showed a saturation mobility of 4.54cm2/Vs and switching property (1.31V/decade) comparable to TTFT with Ag S/D electrodes.

  • PDF

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • Lee, Ji U;John C. Eklund;Robert A. W. Dryfe;Richard G. Compton
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.

Effects of Conductive Material on $LiCoO_2$ Cathode for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$ 정극의 도전재료에 따른 특성)

  • Coh Chil Hoon;Moon Seong In;Hyung Yoo Eup;Yun Mun Soo;Park Chun Jun;Yun Duk Hyun;Yun Suong Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 1999
  • The apparent density. self-separation of the electrode composite from current collector in the electrolyte solution and specific resistance of electronic conduction of the electrode composite were examined by the variation of content of conductive material such as graphitic and black carbons in $LiCoO_2$ composite electrode for lithium ion battery. Increasing the content of conductive material, the apparent density of Lico02 composite electrode was decreased and that of $LiCoO_2$ in composite electrode was only rapidly decreased compared to that of composite. $LiCoO_2$ composite electrodes containing more than 4.1 weight percent of super s black as a conductive material were seU-separated by the immersion into 1 mol/I $LiPF_6$ in propylene carbonate and diethyl carbonate (1:1 volume ratio). Specific resistances related to the electronic conduction of composite electrode were decreased by the increasing the content i)f conductive material. Specific resistance of the composite electrode including $2\~3\%w/w$ of super s black as conductive material was similar to that of $12\%w/w$ of Lonza KS6. In the range of this study, super s black as conductive material is better than Lonza KS6 on battery capacity because of apparent density of $LiCoO_2$ in electrode composite including super s black is higher than that of Lonza KS6.

Novel Thallium(I)-Selective Membrane Electrode Based on a Podal Ligand

  • Ganjali, Mohammad Reza;Pourjavid, Mohammad Reza;Mouradzadegun, Arash;Hosseini, Morteza;Mizani, Farhang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1585-1589
    • /
    • 2003
  • A PVC-based membrane electrode for thallium(I) ions based on 1,21,23,25-tetramethyl-2,20: 3,19-dimetheno-[H, 2] H, 23H, 25H-bis-[1,3] dioxocino[5,4-i:5',4'-i] benzo [1,2-d: 5.4-d'] bis [1,3] benzodioxocin(II) has been prepared. The electrode displays a linear dynamic range of $1.0{\times}10^{-1}-1.0{\times}10^{-5}$ M, with a Nernstian slope of $59.8{\pm}0.2\;mV\;{decad^-1}$, and a detection limit $5.0{\times}10^{-6}$ M. It has a very fast response time of<10 s and can be used for at least ten weeks without a considerable divergence in potentials. This electrode revealed comparatively good selectivity with respect to alkali, alkaline earth, and some transition and heavy metal ions and was effective in a pH range of 2.0-10.0. It was used as an indicator electrode in potentiometric titration of thallium ion with sulfide ion.

The fabrication and analysis of the SFIT type filter (SPIT형 필터 제작 및 분석)

  • You, Il-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.699-706
    • /
    • 2010
  • We have studied to obtain the slanted finger interdigital(SFIT) type filter was formed on the Langasite substrate and was evaporated two IDT electrode by Aluminum-Copper alloy respectively. We can fabricate that the block weighted type IDT as an input transducer of the filter and the withdrawal weighted type IDT as an output transducer of the filter from the results of our computer-simulation. Also, we have performed to obtain the properly design conditions about phase shift conditions of the SPIT type filter. We have employed that the number of pairs of the input and output IDT are 50 pairs and the thickness and the width of reflectors are $5000\;{\AA}$ and $3.6{\mu}m$ respectively. At the first sample, we have employed that the distance from the hot electrode to the reflectors is $2.4{\mu}m$ distance from the ground electrode to the reflectors is $1.8{\mu}m$ and the distance from the hot electrode to the ground is $1.5{\mu}m$ respectively. At the other sample, we have also employed that the distance from the hot electrode to the reflectors and the distance from the ground electrode to the reflectors are $2.4{\mu}m$. Frequency response of the fabricated SAW filter has the property that the center frequency is about 190MHz and bandwidth at the 3dB is probably 7.3 MHz. And we could obtain that return is less than -20dB, ripple characteristics is probably 3dB and triple transit echo(TTE) is less than -22dB after when we have matched impedance.

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

3-D FEM Study on the Optical Characteristics of S-IPS Mode

  • Yang, Seung-Su;Park, Soon-Yeol;Won, Tea-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.231-234
    • /
    • 2008
  • In this paper, we propose a novel electrode structure for superb transmittance in super in-plane switching (S-IPS) mode while keeping the features of the conventional SIPS mode such as the capability of initial LC alignment. The optimization of the electrode made it possible to enhance the light transmittance approximately by 14 % in comparison to the conventional S-IPS cell.

  • PDF