• Title/Summary/Keyword: 3D RP model

Search Result 60, Processing Time 0.024 seconds

An Algorithm to Speed Up the Rapid Prototyping (쾌속조형의 속도를 향상시키기 위한 알고리즘)

  • Ko, Min-Suk;Chang, Min-Ho;Wang, Gi-Nam;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.157-164
    • /
    • 2008
  • While developing physical prototype from CAD model, rapid prototyping mainly focuses on two key points reducing time and material consumption. So, we have to change from a traditional solid model to building a hollowed prototype. In this paper, a new method is presented to hollow out solid objects with uniform wall thickness to increase RP efficiency. To achieve uniform wall thickness, it is necessary to generate internal contour by slicing the offset model of an STL model. Due to many difficulties in this method, this paper proposes a new algorithm that computes internal contours computing offset model which is generated from external contour using wall thickness. Proposed method can easily compute the internal contour by slicing the offset surface defined by the sum of circle swept volumes of external contours without actual offset and the circle wept volumes. Internal contour existences are confirmed by using the external point. Presented algorithm uses the 2D geometric algorithm allowing RP implementation more efficient. Various examples have been tested with implementation of the algorithm, and some examples are presented for illustration.

Development of Scaffold Fabrication System using Multi-axis RP Software Technique (다축 RP 소프트웨어 기술을 이용한 스캐폴드 제조 장비 개발)

  • Park, Jung-Whan;Lee, Jun-Hee;Cho, Hyeon-Uk;Lee, Su-Hee;Park, Su-A;Kim, Wan-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • The scaffold serves as 3D substrate for the cells adhesion and mechanical support for the newly grown tissue by maintaining the 3D structure for the regeneration of tissue and organ. In this paper, we proposed integrated scaffold fabrication system using multi-axis rapid prototyping (RP) technology. It can fabricate various types of scaffolds: arbitrary sculptured shape, primitive shape, and tube shape scaffolds by layered dispensing biocompatible/ biodegradable polymer strands in designated patterns. In order to fabricate the 3D scaffold, we need to generate the plotting path way for the scaffold fabrication system. We design a data processing program - scaffold plotting software, which can convert the 3D STL file, primitive and tube model images into the NC code for the system. Finally, we fabricated the customized 3D scaffolds with high accuracy using the plotting software and the fabrication system.

A Study on methodology of physical Fabrication & reorganization of Epidermis in Space Design - Focused on reorganization of Epidermis, Fabrication - (공간디자인에서 디지털 표피 재 조직화, 물리적 구현 방법 연구 - 표피 재 조직화, 가공 중심으로 -)

  • Park, Jeong-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.150-161
    • /
    • 2008
  • It requires more close cooperation process and mediator for smooth communication in this industry structure where design and engineers are separated. The database of design integrates separate system and helps connection between organizations. The application category is utilized variously from formation to operation. Architectures addressed in this content as Frank Gehry and Nox are making differentiated design on the base of 3d digital methodology and using it widely from generation to fabrication. Especially they got to be free from the generative limit as it became available to analyse, digital surface organization, and realize the complex system form. Now more integrated and delicate works got to be affordable owing to various kinds of improved CNC, RP(rapid-prototype) machines, and architecture hardwares. With a linkage of software now at their disposal, architects can create a digital model of a building and all of its design elements, and in turn use this 3d information to construct actual building components using machines driven by CNC and other advanced manufacturing techniques. Digital technologies are enabling a direct correlation between what design and construction, thus bringing to the forefront the issue of the significance of information, the production, communication, application, and control of digital information in the industrial system. The central requirement is the clear, reliable, and consistent exchange of information among all parties involved in creating a given project.

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

Three-dimensional monte carlo modeling and simulation of point defect generation and recombination during ion implantation (이온 주입 시의 점결함 발생과 재결합에 관한 3차원 몬테 카를로 모델링 및 시뮬레이션)

  • 손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.32-44
    • /
    • 1997
  • A three-dimensional (3D) full-dynamic damage model for ion implantation in crystalline silicon was proposed to calculate more accurately point defect distributions and ion-implanted concentration profiles during ion implantation process. The developed model was based on the physical monte carlo approach. This model was applied to simulate B and BF2 implantation. We compared our results for damage distributions with those of the analytical kinchin-pease approach. In our result, the point defect distributions obtained by our new model are less than those of kinchin-pease approach, and the vacancy distributions differ from the interstitial distributions. The vacancy concentrations are higher than the interstitial ones before 0.8 . Rp to the silicon surface, and after the 0.8 . Rp to the silicon bulk, the interstitial concentrations are revesrsely higher than the vacancy ones.The fully-dynamic damage model for the accumulative damage during ion implantation follows all of the trajectories of both ions and recoiled silicons and, concurrently, the cumulative damage effect on the ions and the recoiled silicons are considered dynamically by introducing the distributon probability of the point defect. In addition, the self-annealing effect of the vacancy-interstitial recombination during ion implantation at room temperature is considered, which resulted in the saturation level for the damage distribution.

  • PDF

Variations of Form Accuracy in the Process of Metal Cast Prototyping using Rapid prototype, Vacuum casting and Ceramic Mold (쾌속조형과 진공주형 및 세라믹 몰드를 이용한 금속 주조 시제품 제작 공정에서의 형상정밀도 변화)

  • Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.131-137
    • /
    • 2007
  • In metal casting process, it is very difficult to predict the form accuracy of cast part and reduce repeatability error. In this study, the variations of form accuracy were measured in the process of metal cast prototyping, where RP part is manufactured from CAD model in the first, and then, wax part is cast in the vacuum environment using the RP part as master model, and finally metal prototype is cast using ceramic mold and the wax part as pattern. To investigate the variations of form accuracy, the averages and standard deviations of error distribution of the parts measured by 3D scanner were compared. It was observed that the biggest shrinkage is generated during the extraction of wax part in the second step and the biggest deterioration of form accuracy is generated during the metal part casting in the last step.

A Study on RP Part Production Using New Circle Approximation Method (새로운 원 근사방법을 적용한 RP Part 제작에 관한 연구)

  • 홍민성;신근하;박시준;최상련;오철호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.81-86
    • /
    • 1999
  • The STL file format is an approximation of 3-D model with triangular facets. STL is a standard input file format of Rapid Prototyping(RP) equipment. In computer graphics, a circle has been approximated with an inscribed polygon, which causes an error between the real and approximated circles. In this study, an intersecting polygon has been used to approximate the circle and applied to produce more accurate RP part. The newly proposed method shows it's excellence in part accuracy.

  • PDF

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

A 3D Watermarking on STL using Vertex domain (버텍스 영역을 이용한 STL에서의 3차원 디지털 워터마킹)

  • 김기석;천인국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.901-906
    • /
    • 2002
  • This paper is a research about method, that is used in Rapid Prototyping system, that inserts and extracts watermark in STL(standard transform language) that has a 3D geometrical model. The proposed algorithm inserts watermark in the vertex domain of STL facet without the distortion of 3D model. If we make use of a established algorithm for watermarking of STL, a watermark inserted to 3D model can be removed by simple attack that change order of facet. The proposed algorithm has robustness about these attack. Experiment results verify that the proposed algorithm, to encode and decode watermark in STL 3D geometrical model, doesn't distort a 3D model at all. And it shows that the proposed algorithm is available.

  • PDF

Mandibular Reconstruction using Simulation Surgery after Segmental Mandibulectomy

  • Hwang, Jong-Hyun;Kim, Ji-Wan;Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Functional and esthetic reconstruction after segmental mandibulectomy is one of the most challenging surgeries in microsurgical reconstruction field. Simulation surgery before free flap reconstruction has been performed for efficient surgery and successful results. Fibula free flap is the flap of the choice for reconstruction of the segmental mandibular defect. Straight nature of the fibula bone requires multiple segmentations to fit into mandible. 3D rapid prototype (RP) model gives a lot of information for mandibular reconstruction. The purpose of this study was to report mandibular reconstruction with free fibular flap using simulation surgery. A total of 30 consecutive patients were included for functional and esthetic evaluation. Among 30 patients, two flaps showed necrosis after radiotherapy. The other flaps were all survived and showed successful reconstruction in both function and esthetics.