• 제목/요약/키워드: 3D QSAR

검색결과 132건 처리시간 0.026초

Designing Hypothesis of 2-Substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] Acetamide Analogs as Anticancer Agents: QSAR Approach

  • Bedadurge, Ajay B.;Shaikh, Anwar R.
    • 대한화학회지
    • /
    • 제57권6호
    • /
    • pp.744-754
    • /
    • 2013
  • Quantitative structure-activity relationship (QSAR) analysis for recently synthesized imidazole-(benz)azole and imidazole - piperazine derivatives was studied for their anticancer activities against breast (MCF-7) cell lines. The statistically significant 2D-QSAR models ($r^2=0.8901$; $q^2=0.8130$; F test = 36.4635; $r^2$ se = 0.1696; $q^2$ se = 0.12212; pred_$r^2=0.4229$; pred_$r^2$ se = 0.4606 and $r^2=0.8763$; $q^2=0.7617$; F test = 31.8737; $r^2$ se = 0.1951; $q^2$ se = 0.2708; pred_$r^2=0.4386$; pred_$r^2$ se = 0.3950) were developed using molecular design suite (VLifeMDS 4.2). The study was performed with 18 compounds (data set) using random selection and manual selection methods used for the division of the data set into training and test set. Multiple linear regression (MLR) methodology with stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the favorable anticancer activity. The results derived may be useful in further designing novel imidazole-(benz)azole and imidazole-piperazine derivatives against breast (MCF-7) cell lines prior to synthesis.

Phenoxy, Phenylthio 및 Benzyloxy-기가 치환된 Quinolone 유도체들의 항트리파노소마 활성에 대한 3D-QSAR 분석 (3D-QSAR Analysis on the Antitrypanosomal Activity of Phenoxy, Phenylthio or Benzyloxy Group Substituted Quinolone Analogues)

  • 명평근;강나나;김상진;성낙도
    • 약학회지
    • /
    • 제54권4호
    • /
    • pp.288-294
    • /
    • 2010
  • Three dimensional quantitative-structure relationships (3D-QSARs) models between structures of phenoxy, phenylthio or benzyloxy substituted quinolone analogues and their antitrypanosomal activity against Chagas disease (Trypanosoma cruzi) were derived and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The optimized CoMFA 1 model ($q^2$=0.528 and $r^2$=0.964) showed the best statistical results. According to the optimized CoMFA 1 model, the antitrypanosomal activities were dependent on the steric (60.0%) and electrostatic (36.2%) factors of quinolone derivatives. From the contour maps, it is predicted that the activity will be increased when sterically favored groups were located in $R_4$ and $R_5$ position and sterically disfavored groups were located in $R_2$ position. Also, the positively charged groups on $R_2$ would be able to increase the antitrypanosomal activities.

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.266-272
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

CoMSIA 3D-QSAR Analysis of 3,4-Dihydroquinazoline Derivatives Against Human Colon Cancer HT-29 Cells

  • Kwon, Gi Hyun;Cho, Sehyeon;Lee, Jinsung;Sohn, Joo Mi;Byun, Joon Seok;Lee, Kyung-Tae;Lee, Jae Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3181-3187
    • /
    • 2014
  • A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human colon cancer HT-29 cell were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, BK10001 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined electrostatic, hydrophobic, and hydrogen-bond acceptor fields ($q^2=0.648$, $r^2=0.882$). This model was validated by an external test set of six compounds giving satisfactory predictive $r^2$ values of 0.879. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human colon cancer.

비스 방향족 ${\alpha},{\beta}$ 불포화 케톤 유도체 중 2-thienyl 및 2-furyl 치환체의 항균활성에 관한 비교분자장 분석(CoMFA) (Comparative molecular field analysis(CoMFA) on the fungicidal activity of 2-thienyl and 2-furyl substituents in bis-aromatic ${\alpha},{\beta}$-unsaturated ketone derivatives)

  • 성낙도;유성재;임치환;적송미기
    • 농약과학회지
    • /
    • 제2권2호
    • /
    • pp.16-21
    • /
    • 1998
  • 비스 방향족 ${\alpha},{\beta}$-불포화 케톤 유도체의 헤테로 방향족고리($R_{1}$) 치환체중 치환 phenyl backbone($R_{2}$)들의 구조변환에 따른 벼도열병균(Pyricularia oryzae)과 토마토역병균(Phytophthora irifestans)에 대한 in vivo에서의 항균활성 관계(SAR)를 3-D QSAR 방법인 비교분자장 분석(CoMFA)으로 해석하였다. 두 식물병원균에 대한 항균활성을 설명하는 CoMFA결과는 2-D QSAR에서 검토된 결과와 유사한 경향이었으며 입체효과(Es)와 전자효과(${\sigma}$)로 설명할 수 있었다. 즉, 벼도열병균은 aryl group에 bulky한 치환기(Es>0)가 도입되어야 하며 ${\beta}$탄소원자의 양하전이 증가할수록 강한 항균활성을 나타낼것으로 기대되었다. 반면, 토마토역병균의 경우에는 aryl group에 체적이 작은 치환기가 도입될수록, 그리고 ${\beta}$ 탄소원자의 양하전이 감소할수록 강한 항균활성을 나타낼 것으로 기대 되었다. 또한, 입체효과와 전자효과를 등 고도로 나타낸 CoMFA결과가 기존의 2-D QSAR보다 항균활성에 미치는 화합물의 구조적 요인을 보다 구체적으로 제시할 수 있었다.

  • PDF

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors

  • Chai, Han-Ha;Lim, Dajeong;Chai, Hee-Yeoul;Jung, Eunkyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.837-850
    • /
    • 2013
  • Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the rationale concept for changes in the structure to have more potent analogs focused on the class of arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling.

CoMFA vs. Topomer CoMFA, which One is better a Case Study with 5-Lipoxygenase Inhibitors

  • Gadhe, Changdev G.
    • 통합자연과학논문집
    • /
    • 제4권2호
    • /
    • pp.91-98
    • /
    • 2011
  • Quantitative structure-activity relationships (QSAR) have been applied for two decades in the development of relationships between physicochemical properties of chemical substances and their biological activities to obtain a reliable statistical model for prediction of the activities of new chemical entities. The fundamental principle underlying the QSAR is that the structural difference is responsible for the variations in biological activities of the compounds. In this work, we developed 3D-QSAR model for a series of 5-Lipoxygenase inhibitors, utilizing comparative molecular field analysis (CoMFA) and Topomer CoMFA methodologies. Our developed models addressed superiority of Topomer CoMFA over CoMFA. The CoMFA model was obtained with $q^2$=0.593, $r^2$=0.939, $Q^2$=0.334 with 6 optimum number of components (ONC). Higher statistical results were obtained with the Topomer CoMFA model ($q^2$=0.819, $r^2$=0.947, ONC=5). Further robustness of developed models was checked with the ANOVA test and it shows F=113 for CoMFA and F=162.4 for Topomer CoMFA model. Contour map analysis indicated that the more requirement of electrostatic parameter for improved potency.

3D QSAR Study of 2-Methoxyphenylpiperazinylakanamides as 5-Hydroxytryptamine (Serotonin) Receptor 7 Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.128-135
    • /
    • 2016
  • 5-hydroxytryptamine (serotonin) receptor ($5-HT_7R$) 7 is one of G-Protein coupled receptors, which is activated by the neurotransmitter Serotonin. After activation by serotonin, $5-HT_7$ activates the production of the intracellular signaling molecule cyclic AMP. $5-HT_7$ receptor has been found to be involved in the pathophysiology of various disorders. It is reported that $5-HT_7$ receptor antagonists can be used as antidepressant agents. In this study, we report the important structural and chemical parameters for 2-methoxyphenylpiperazinylakanamides as $5-HT_7R$ inhibitors. A 3D QSAR study based on comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with $q^2$ of 0.594 with 6 components, $r^2$ of 0.986, Fisher value as 60.607, and an estimated standard error of 0.043. The predictive ability of the test set was 0.602. Results obtained the CoMFA models suggest that the data are well fitted and have high predictive ability. The contour maps are generated and studied. The contour analyses may serve as tool in the future for designing of novel and more potent $5-HT_7R$ derivatives.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

3D QSAR Studies on Cinnamaldehyde Analogues as Farnesyl Protein Transferase Inhibitors

  • Nack-Do, Sung;Cho, Young-Kwon;Kwon, Byoung-Mog;Hyun, Kwan-Hoon;Kim, Chang-Kyung
    • Archives of Pharmacal Research
    • /
    • 제27권10호
    • /
    • pp.1001-1008
    • /
    • 2004
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on 59 cinnamaldehyde analogues as Farnesyl Protein Transferase (FPTase) inhibitors were investigated using comparative molecular field analysis (CoMFA) with the PLS region-focusing method. Forty-nine training set inhibitors were used for CoMFA with two different grid spacings, $2{\AA}\;and\;1{\AA}$ Ten compounds, which were not used in model generation, were used to validate the CoMFA models. After the PLS analysis, the best predictive CoMFA model showed that the cross-validated value $(r^2_{cv})$ and the non-cross validated conventional value$(r^2_{ncv})$ are 0.557 and 0.950, respectively. From the CoMFA contour maps, the steric and electrostatic properties of cinnamaldehyde analogues can be identified and verified.