• Title/Summary/Keyword: 3D Printer Filament

Search Result 54, Processing Time 0.016 seconds

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

A Study on the Usefulness of Copper Filters Made with 3D Printers in Longbone Examination Using Long Length Detector (장골 검출기를 이용한 장골 검사에서 3D 프린터로 제작한 구리 필터의 유용성 연구)

  • Kim, Woo-Young;Seo, Hyun-Soo;Han, Bong-Ju;Yoon, Myeong-Seong;Lee, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.607-613
    • /
    • 2021
  • Long-bone examination is mainly used for inspection of the lower extremities. Recently, a long length detector (FXRD-1751S, VIEWORKS, Korea) with three digital detectors attached has been developed. High energy X-rays are used because pelvic areas require high image quality. In this case, X-rays are transmitted a lot in thin areas such as an ankle, and it is not suitable for diagnosing an image. Therefore, this study use copper filters made with 3D printers to increase image quality in the Long-bone inspection. A copper filter was manufactured in consideration of the overall thickness of the lower part. The experiment was conducted in anterior-posterior (AP) and lateral (LAT) positions, depending on the presence or absence of the filter. 5x5 pixels of region of interest (ROI) were selected from the pelvis, knee, and ankle areas. X-rays were irradiated under the conditions of 70 kVp and 40 mAs for AP, 80 kVp, and 63 mAs for lat when without filters, 90 kVp and 80 mAs for AP, 90 kVp and 100 mAs for lat when with filters. signal to noise ratio(SNR) ratio and contrast to noise (CNR) values were measured 1106.38, 14.34 before applying the filter and 1189.32, 70.43 after the filter. For the knee area, 650.44, 97.61 before applying the filter, and 1013.17, 444.24 after applying the filter. For the ankle area, 206.65, 23.68 before applying the filter and 993.50, 136.11 after applying the filter. In the Long-bone examination, SNR and CNR were greatly measured when the filter was applied, confirmed the availability of using the copper additional filter.

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.