• Title/Summary/Keyword: 3D Position Tracking

Search Result 155, Processing Time 0.027 seconds

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

3D Rigid Body Tracking Algorithm Using 2D Passive Marker Image (2D 패시브마커 영상을 이용한 3차원 리지드 바디 추적 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.587-588
    • /
    • 2022
  • In this paper, we propose a rigid body tracking method in 3D space using 2D passive marker images from multiple motion capture cameras. First, a calibration process using a chess board is performed to obtain the internal variables of individual cameras, and in the second calibration process, the triangular structure with three markers is moved so that all cameras can observe it, and then the accumulated data for each frame is calculated. Correction and update of relative position information between cameras. After that, the three-dimensional coordinates of the three markers were restored through the process of converting the coordinate system of each camera into the 3D world coordinate system, the distance between each marker was calculated, and the difference with the actual distance was compared. As a result, an error within an average of 2mm was measured.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Mixed reality system using adaptive dense disparity estimation (적응적 미세 변이추정기법을 이용한 스테레오 혼합 현실 시스템 구현)

  • 민동보;김한성;양기선;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, we propose the method of stereo images composition using adaptive dense disparity estimation. For the correct composition of stereo image and 3D virtual object, we need correct marker position and depth information. The existing algorithms use position information of markers in stereo images for calculating depth of calibration object. But this depth information may be wrong in case of inaccurate marker tracking. Moreover in occlusion region, we can't know depth of 3D object, so we can't composite stereo images and 3D virtual object. In these reasons, the proposed algorithm uses adaptive dense disparity estimation for calculation of depth. The adaptive dense disparity estimation is the algorithm that use pixel-based disparity estimation and the search range is limited around calibration object.

  • PDF

Quadratic Kalman Filter Object Tracking with Moving Pictures (영상 기반의 이차 칼만 필터를 이용한 객체 추적)

  • Park, Sun-Bae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In this paper, we propose a novel quadratic Kalman filter based object tracking algorithm using moving pictures. Quadratic Kalman filter, which is introduced recently, has not yet been applied to the problem of 3-dimensional (3-D) object tracking. Since the mapping of a position in 2-D moving pictures into a 3-D world involves non-linear transformation, appropriate algorithm must be chosen for object tracking. In this situation, the quadratic Kalman filter can achieve better accuracy than extended Kalman filter. Under the same conditions, we compare extended Kalman filter, unscented Kalman filter and sequential importance resampling particle filter together with the proposed scheme. In conculsion, the proposed scheme decreases the divergence rate by half compared with the scheme based on extended Kalman filter and improves the accuracy by about 1% in comparison with the one based on unscented Kalman filter.

Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target (3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석)

  • Park, Sung-Lin;Kim, Ki-Cheol;Kim, Yong-shik;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF

Calculation of Dumping Vehicle Trajectory and Camera Coordinate Transform for Detection of Waste Dumping Position (폐기물 매립위치의 검출을 위한 매립차량 궤적 추적 계산 및 카메라 좌표변환)

  • Lee, Dong-Gyu;Lee, Young-Dae;Cho, Sung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.243-249
    • /
    • 2013
  • In waste repository environment, we can process the waste history efficiently for reuse by recording the history trajectory of the vehicle which loaded waste and the dumping position of the waste vehicle. By mapping the unloaded waste to 3D and by extracting the dumping point, a new method was implemented so as to record the final dumping position and the waste content under various experiments. In this paper, we developed the algorithm which tracking the vehicle and deciding the moment of dumping in landfills. We first trace the position of vehicle using the difference image between current image and background image and then we decide the stop point from the shape of vehicle route and detect the dumping point by comparing the dumping image with the image that vehicle is stopping. From the camera parameters, The transform method between screen coordinate and real coordinate of landfills is proposed.

Boundary Line Extract for Moving Object Tracking (이동 물체 추적을 위한 경계선 추출)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.28-34
    • /
    • 1998
  • In this paper, I'd like to make a suggestion for boundary line detect algorithm which is used 3-D image processing system in order to track moving object. Through this study, more than anything else, difference image method was adopted to detect moving object in input image. To detect moving object, I made use of detect windows constructed by 4's predictive areas and object area for the purpose of reducing processing time and its size was determined by the size of moving object and prediction parameter directed center position. And also, tracking camera was movable toward the direction of X, Y by DC motor. As a conclusion of the study proposed algorithm, I found out the following results that tracking error was less than 6% of total moving object size and maximum tracking time 2 seconds by toy-car simulation.

  • PDF

Robot System Design Capable of Motion Recognition and Tracking the Operator's Motion (사용자의 동작인식 및 모사를 구현하는 로봇시스템 설계)

  • Choi, Yonguk;Yoon, Sanghyun;Kim, Junsik;Ahn, YoungSeok;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2015
  • Three dimensional (3D) position determination and motion recognition using a 3D depth sensor camera are applied to a developed penguin-shaped robot, and its validity and closeness are investigated. The robot is equipped with an Asus Xtion Pro Live as a 3D depth camera, and a sound module. Using the skeleton information from the motion recognition data extracted from the camera, the robot is controlled so as to follow the typical three mode-reactions formed by the operator's gestures. In this study, the extraction of skeleton joint information using the 3D depth camera is introduced, and the tracking performance of the operator's motions is explained.