• 제목/요약/키워드: 3D Pose Estimation

검색결과 155건 처리시간 0.02초

스테레오 시각과 Kalman 필터링을 이용한 강인한 3차원 운동추정 (Robust 3-D Motion Estimation Based on Stereo Vision and Kalman Filtering)

  • 계영철
    • 방송공학회논문지
    • /
    • 제1권2호
    • /
    • pp.176-187
    • /
    • 1996
  • 본고는 로보트 팔의 선단에 부착된 카메라에 의하여 촬영된 일련의 스테레오 영상을 이용하여 운동물체의 3차원 자세 (위치와 방향)를 정확히 추정하는 방법을 다룬다. 본고는 이미 발표된 바 있는 연구결과를 확장한 것으로서[1], 2차원 영상의 측정잡음 뿐만아니라[1], 또한 로보트 팔의 죠인트 각도의 랜덤잡음이 함께 존재할 경우 world 좌표계 (또는 로보트 기지좌표계)를 기준으로 한 운동물체의 3차원 자세의 추정에 중점을 둔다. 이를 위하여, 다음 사항에 근거하여 선형 Kalman 필터를 유도한다. (1) 2차원 영상의 측정잡음이 3차원 공간으로 전파되는 것을 분석함으로써, 이에 기인한 물체좌표계의 방향오차를 카메라 좌표계를 기준으로 하여 모델링한다; (2) 죠인트 각도 오차에 의한 로보트 선단좌표계의 방향오차를 (1)의 결과와 결합하여 extended Jacobian matrix를 유도한다; 그리고 (3) 본질적으로 비선형인 물체의 회전운동을 quaternion을 도입함으로써 선형화 한다. 운동 파라메터는 추정된 quaternion으로부터 반복 최소자승 방법을 이용하여 계산된다. 모의실험 결과, 추정오차가 상당히 감소되고, 실제의 운동 파라메터가 참 값으로 정확히 수렴함을 알 수 있다.

  • PDF

비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정 (The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality)

  • 이선형;한헌수;한영준
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.155-166
    • /
    • 2012
  • 본 논문은 비마커 증강현실(Marker-less Augmented Reality)을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 알고리즘 기반 손 자세의 추정 기법을 제안한다. 기존 비마커 증강현실의 연구는 손을 검출하기 위해 단순한 실험 배경에서 피부색상 기반으로 손 영역을 검출한다. 그리고 손가락의 특징점을 검출하여 손의 자세를 추정하므로 카메라에서 검출할 수 있는 손 자세에 많은 제약이 따른다. 하지만, 본 논문은 3D 센서의 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기법을 사용함으로써 복잡한 배경에서 손을 검출할 수 있으며 손 자세를 크게 제약하지 않고 손 영역의 중심점과 임의의 2점의 깊이 값만으로 정확한 손 자세를 추정한다. 제안하는 Mean Shift 추적 기법은 피부 색상정보만 사용하는 방법보다 약 50픽셀 이하의 거리 오차를 보였다. 그리고 증강실험에서 제안하는 손 자세 추정 방법은 복잡한 실험환경에서도 마커 기반 방법과 유사한 성능의 실험결과를 보였다.

토마토 위치 및 자세 추정을 위한 데이터 증대기법 (Data Augmentation for Tomato Detection and Pose Estimation)

  • 장민호;황영배
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.44-55
    • /
    • 2022
  • 농업 관련 방송 콘텐츠에서 과일에 대한 자동적인 정보 제공을 위해서 대상 과일의 인스턴스 영상 분할이 요구된다. 또한, 해당 과일에 대한 3차원 자세에 대한 정보 제공도 의미있게 사용될 수 있다. 본 논문에서는 영상 콘텐츠에서 토마토에 대한 정보를 제공하는 연구를 다룬다. 인스턴스 영상 분할 기법을 학습하기 위해서는 다량의 데이터가 필요하지만 충분한 토마토 학습데이터를 얻기는 힘들다. 따라서 적은 양의 실사 영상을 바탕으로 데이터 증대기법을 통해 학습 데이터를 생성하였다. 실사 영상만을 통한 학습 결과 정확도에 비해서, 전경과 배경을 분리해서 만들어진 합성 영상을 통해 학습한 결과, 기존 대비 성능이 향상되는 것을 확인하였다. 영상 전처리 기법들을 활용해서 만들어진 영상을 사용한 데이터 증대 영상의 학습 결과, 전경과 배경을 분리한 합성 영상보다 높은 성능을 얻는 것을 확인하였다. 객체 검출 후 자세 추정을 하기 위해 RGB-D 카메라를 이용하여 포인트 클라우드를 획득하였고 최소제곱법을 이용한 실린더 피팅을 진행하였고, 실린더의 축 방향을 통해 토마토 자세를 추정하였다. 우리는 다양한 실험을 통해서 대상 객체에 대한 검출, 인스턴스 영상 분할, 실린더 피팅의 결과가 의미있게 나타난다는 것을 보였다.

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.

휴머노이드 로봇을 이용한 3차원 자세 추정 알고리즘 정확도 분석 (Accuracy Analysis of 3D Posture Estimation Algorithm Using Humanoid Robot)

  • 백수진;김아현;정상현;최영림;김종욱
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.71-74
    • /
    • 2022
  • 본 논문은 최적화알고리즘을 이용한 관절각 기반 3차원 자세 추정 기법의 정확도를 휴머노이드 로봇을 이용하여 검증하는 방법을 제안한다. 구글의 자세 추정 오픈소스 패키지인 MPP(MediaPipe Pose)로 특정자세를 취한 휴머노이드 로봇의 관절 좌표를 카메라의 픽셀 좌표로 추출한다. 추출한 픽셀 좌표를 전역최적화 방법인 uDEAS(univariate Dynamic Encoding Algorithm for Searches)를 통해 시상면과 관상면에서의 각도를 추정하고 휴머노이드 로봇의 실제 관절 각도와 비교하여 알고리즘의 정확도를 검증하는 방법을 제시한다.

  • PDF

3차원 장면 복원을 위한 강건한 실시간 시각 주행 거리 측정 (Robust Real-Time Visual Odometry Estimation for 3D Scene Reconstruction)

  • 김주희;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권4호
    • /
    • pp.187-194
    • /
    • 2015
  • 본 논문에서는 RGB-D 입력 영상들로부터 3차원 공간을 움직이는 카메라의 실시간 포즈를 효과적으로 추적할 수 있는 시각 주행 거리측정기를 제안한다. 본 논문에서 제안하는 시각 주행 거리 측정기에서는 컬러 영상과 깊이 영상의 풍부한 정보를 충분히 활용하면서도 실시간 계산량을 줄이기 위해, 특징 기반의 저밀도 주행 거리 계산 방법을 사용한다. 본 시스템에서는 보다 정확한 주행 거리 추정치를 얻기 위해, 카메라 이동 이전과 이동 이후의 영상에서 추출한 특징들을 정합한 뒤, 정합된 특징들에 대한 추가적인 정상 집합 정제 과정과 주행 거리 정제 작업을 반복한다. 또한, 정제 후 잔여 정상 집합의 크기가 충분치 않은 경우에도 잔여 정상 집합의 크기에 비례해 최종 주행 거리를 결정함으로써, 추적 성공률을 크게 향상시켰다. TUM 대학의 벤치마크 데이터 집합을 이용한 실험과 3차원 장면 복원 응용 시스템의 구현을 통해, 본 논문에서 제안하는 시각 주행 거리 측정 방법의 높은 성능을 확인할 수 있었다.

지능형 헬멧시현시스템 설계 및 시험평가 (Design and Evaluation of Intelligent Helmet Display System)

  • 황상현
    • 한국항공우주학회지
    • /
    • 제45권5호
    • /
    • pp.417-428
    • /
    • 2017
  • 본 논문에서는 항공기 조종사 지능형 헬멧시현시스템(IHDS, Intelligent Helmet Display System)의 아키텍쳐 설계, 단위 구성품 설계, 핵심 소프트웨어 설계내용(헬멧 자세추적, 고도오차 보정 소프트웨어)을 기술하며, 단위시험 및 통합시험에 대한 결과를 기술한다. 세계적인 최신 헬멧시현시스템 개발 추세를 반영하여 3차원 전자지도 시현, FLIR(Forward Looking Infra-Red) 영상시현, 하이브리드형 헬멧자세추적, 바이저 반사형광학계, 야시카메라 영상시현 및 경량 복합소재 헬멧쉘 등의 사양을 설계에 적용하였다. 특히 3차원 전자지도 데이터의 고도오차 자동보정 기법, 고정밀 영상정합 기법, 다색(Multi-color) 조명광학계, 회절소자를 이용한 투과형 영상발광면, 헬멧자세 추정시간을 최소화하는 추적용 카메라, 장/탈착형 야시카메라, 머리 밀착용 에어포켓 등의 신개념의 설계를 제안하였다. 모든 시스템 구성품의 시제작을 완료한 후 단위시험과 시스템 통합시험을 수행하여 기능과 성능을 검증하였다.

단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법 (High-Quality Depth Map Generation of Humans in Monocular Videos)

  • 이정진;이상우;박종진;노준용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-11
    • /
    • 2014
  • 단안 영상에서 3차원 입체영상으로 변환한 결과물의 품질은장면의 물체들에게 부여한 깊이 정보의 정확도에 의존적이다. 영상의 매 프레임마다 장면의 물체들의 깊이 정보를 수동으로 입력하는 것은 많은 시간을 필요로 하는 노동집약적인 작업이다. 특히, 높은 자유도를 가진 관절형 물체인 인간의 몸은 고품질 입체변환에 있어서 가장 어려운 물체 중에 하나이다. 다양한 스타일의 옷, 액세서리, 머리카락들이 만드는 매우 복잡한 실루엣은 문제를 더욱 어렵게 한다. 본 논문에서는 단안 영상에 나타난 인간 오브젝트의 고품질 깊이 정보를 생성하는 효율적인 방법을 제안한다. 먼저, 적은 수의 사용자입력을 기반으로 3 원 템플릿 모델을 순차 관절 각도 제약을 가진 자세 추정 방법을 통해서 영상에 등장하는 2차원 인간 오브젝트에 정합한다. 정합된 3차원 모델로부터 초기 깊이 정보를 획득한 뒤, 컬러 세그멘테이션 방법을 기반으로 한 부분 깊이 전파 방법을 통해 세밀한 표현을 보장하며 누락된 영역을 포함하는 최종 깊이 정보를 생성한다. 숙련된 아티스트들의 수작업 결과물과 제안된 방법의 결과물을 비교한 검증 실험은 제안된 방법이 단안 영상에서 동등한 수준의 깊이 정보를 효율적으로 생성한다는 것을 보여준다.

ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법 (A Fast Correspondence Matching for Iterative Closest Point Algorithm)

  • 신건희;최재희;김광기
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.