• 제목/요약/키워드: 3D Performance Calculation

검색결과 209건 처리시간 0.026초

A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

  • Stimpson, Shane;Liu, Yuxuan;Collins, Benjamin;Clarno, Kevin
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1240-1249
    • /
    • 2017
  • An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly $2{\times}$. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly $3-4{\times}$, with a corresponding 15-20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of $2{\times}$. In total, the improvements yield roughly a $7-8{\times}$ speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu;Wuming Leng;Xi Ai;Hossein Moayedi;Qishu Zhang;Xinyu Ye
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.517-529
    • /
    • 2023
  • Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.

사운드 트레이싱을 위한 적응형 깊이 조절 알고리즘 (Adaptive depth control algorithm for sound tracing)

  • 김은재;윤주원;정우남;김영식;박우찬
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권5호
    • /
    • pp.21-30
    • /
    • 2018
  • 본 논문에서는 현실감을 높이기 위한 청각적 기술로 기하학적 방법을 사용하는 광선 추적(ray-tracing) 기반의 3D Sound rendering기술인 Sound-tracing을 사용한다. Sound-tracing은 사운드 전파(sound propagation)단계에서 많은 비용이 든다. 사운드 전파 비용을 감소시키기 위해 제안하는 알고리즘은 이전 프레임들의 평균 유효 frame 수를 계산하고 그 수치를 기반으로 공간에 따른 depth를 조절하는 방법이다. 실험 결과 depth를 조절하지 않은 결과와 비교하면 음원이 실내에 있었을 때 path 손실률은 0.72%이고 탐색 및 충돌검사 단계(traversal & Intersection test)가 85.13%의 계산량 감소를 보이고 전체 frame rate는 4.48% 증가하였다. 음원이 실외에 있었을 때 path 손실률은 0%이고 탐색 및 충돌검사 단계가 25.01%의 계산량 감소를 보이고 전체 frame rate가 7.85% 증가하였다. 이는 path 손실률을 최소화하면서 렌더링 성능을 올릴 수 있었다.

컴퓨터 단층 촬영기(CT)의 가상 실습을 위한 3차원 체험형 교육 시스템 (An Experience Type Virtual Reality Training System for CT(Computerized Tomography) Operations)

  • 신용민;김영호;김병기
    • 정보처리학회논문지D
    • /
    • 제14D권5호
    • /
    • pp.501-508
    • /
    • 2007
  • 시뮬레이션 시스템의 도입으로 항공, 선박, 의료 분야에서 많은 활용이 이루어졌다. 3차원 시뮬레이션 시스템은 시스템의 자원과 컴퓨터 계산량이 많아 지금까지 그 활용도가 현저히 미비했다. 그러나 그래픽 카드의 성능 및 시뮬레이션 기능이 발전하면서 PC 기반 시뮬레이션이 활성화 되었고, 일선 학교에서의 교육용 소프트웨어로 가능성을 검증 받고 있다. 하지만 일선 교육기관에서 CT 촬영 장비의 구매와 유지를 하기 위해 매우 많은 예산의 편성과 인력을 투자하여야 한다. 이러한 여건 때문에 교육 기관은 병원에 학생을 위탁하여 실습 과정을 간접 경험하게 하거나 단순한 견학에 그치고 있다. 따라서 본 논문에서는 의료 분야의 CT 촬영 장비를 PC기반의 3차원 가상환경에서 직접 조작해 볼 수 있는 체험형 CT 가상현실 교육 시스템을 개발하였다.

공기청정기 CA 규격성능시험 결과 분석 및 가스시험 변별력 향상 방안연구 (Analysis of CA Certification Performance Test Results and Improvement of CA Test Method for a Better Differentiation of Gas Removal Performances for Room Air Cleaners)

  • 김학준;한방우;김용진;차성일
    • 한국입자에어로졸학회지
    • /
    • 제7권3호
    • /
    • pp.87-97
    • /
    • 2011
  • In this study, we organized the test results obtained from the performance tests for the CA certificated air cleaners which had been commercially available in Korea since 2003, and analyzed the correlation among the test parameters such as flow rate, particle collection efficiency, clean air delivery rate (CADR), ozone emission, odor removal efficiency and noise level etc. The noise level of 267 air cleaners were increased as concentrated at the 45, 50, 55 dB, which are the required noise level for CA certification according to flow rate, and ozone emissions from the CA air cleaners were significantly lower than the requirement limit, 50 ppb for 24 hour operation. The average particle collection efficiency and odor removal efficiency were 89.3 and 80.8%, approximately 20% higher than the requirement of CA certification, regardless of flow rates. The particle removal performance of an air cleaner was clearly discriminated by its CADR, and the CADR was obtained with a simple calculation: 0.79 x flow rate. The low differentiation of gas removal performance of air cleaners by the current CA gas test method was improved by 3.2, 751.3, 13.4 times for ammonia, acetic acid, respectively, by adopting the CADR concept and the real time measurement method, FTIR, for gas removal performance test.

피동 원자로건물 냉각계통 실험에 관한 수치적 연구 (Numerical Investigation on Experiment for Passive Containment Cooling System)

  • 하희운;서정수
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

3차원 패터닝을 위한 레이저 헤드설계 및 열해석 (Laser Head Design and Heat Transfer Analysis for 3D Patterning)

  • 예강현;최해운
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.46-50
    • /
    • 2016
  • A laser head was designed for micro-scale patterning and joining applications. The target feature size of the pattern was $100{\mu}m$, and optics were designed to perform the target. Two singlet lenses were combined to minimize the chromatic aberration, and the geometry of the lenses was calculated by using the raytracing method with a commercial software program. As a restriction of lens design, the focal length was set at 100mm, and the maximum diameter of the lens or beam size was limited to 10mm for the assembly in the limited cage size. The maximum temperatures were calculated to be $1367^{\circ}C$, $1508^{\circ}C$, and $1905^{\circ}C$ for 10, 12, and 15 Watts of power, respectively. A specially designed laser head was used to compensate for the distance between the object and the lens. The detailed design mechanism and 3D data were presented. The optics design and detailed performance of the lens were analyzed by using MTF and spot diagram calculation.

웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발 (Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant)

  • 서재승;전규동
    • 한국시뮬레이션학회논문지
    • /
    • 제13권2호
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

철도 인프라 BIM 디지털 모델의 전자납품 프로세스 및 기능 모듈 구성방안 연구 (A study on the Electronic Delivery Process and the Configuration Functional Modules of Railway Infrastructure BIM Digital Model)

  • 최광열;김진영;최형래;김이현
    • 한국BIM학회 논문집
    • /
    • 제11권3호
    • /
    • pp.55-66
    • /
    • 2021
  • Recently, Building Information Modeling(BIM) has become a hot topic in the construction industry such as quantity calculation, interference check, process management, and construction cost management. It is also trying to convert the existing 2D design to 3D design and introduce the BIM in various fields, thus, many new deliverable are being presented but there are many issues due to the lack of standard guides on the preparation and delivery criteria for such new deliverable and how to utilize performance data. Therefore, In order to develop the electronic delivery process, we analyzed the process related to the delivery of BIM digital models presented in domestic and international BIM guidelines and the delivery of products from the Korea National Railway. The analysis focused on the list of achievements, delivery process, quality review standards, and the utilization code system of the Korea National Railway through BIM guidelines and the National Railroad Service's business procedures. Based on these analysis results, it presents a plan to construct an functional module of electronic delivery.

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.