• Title/Summary/Keyword: 3D Motion

Search Result 2,063, Processing Time 0.036 seconds

Contribution of color to perception of 2D and 3D motion

  • Shioiri, Satoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1152-1153
    • /
    • 2009
  • Although motion impression is weak with isoluminant color stimuli, it has been shown that color signals influence motion perception. We discuss similarities and differences between color motion and luminance motion, focusing on temporal characteristics of the perception of the 2D and 3D motion.

  • PDF

Motion Adaptation Control of 3-D Human Character (3차원 캐릭터의 동작적응 제어 기법)

  • 김상수;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.383-383
    • /
    • 2000
  • In this paper, a motion adaptation control is applied for animation of 3-D human character. The method includes parameterization of joint motion data, motion adaptation based on body ratio of character, dynamic adaptation using genetic algorithm, etc. The feasibility of motion adaptation technique is verified by applying to motion control and adaptation of a 3-D human character.

  • PDF

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images

  • Choi, Hee-Jin;Jung, Jae-Hyun;Kim, Hwi;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.383-387
    • /
    • 2010
  • The stereoscopic three-dimensional (3D) display provides a 3D image by inducing binocular disparity for the observers who wear special glasses. With the rapid progress in flat panel display technologies, the stereoscopic 3D display is becoming a new benefit-model of the current display industry, and several kinds of commercial stereoscopic 3D products have been released and are attracting people. Nowadays, the motion picture quality of the 3D image becomes as important as resolution or luminance since most of the commercial 3D products are 3D televisions or 3D monitors which are required to display a clear motion 3D image. In this paper, an analysis and simulation of the motion picture quality of stereoscopic 3D image is proposed, and a comparison of the motion picture performance among the current stereoscopic 3D technologies is also provided.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

3D Motion GUI for mobile phone (이동통신 단말기를 위한 3D Motion GUI)

  • Park, Sang-Hyun;Ok, Jun-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.339-344
    • /
    • 2007
  • 이동통신 단말기의 그래픽 유저 인터페이스 환경은 다양한 요인에 의하여 그 변화를 자극 받고 있다. 한정된 디스플레이 공간 안에서의 다 기능화로 인한 사용성의 문제, 정적이고 지시적인 상황에 익숙한 문자 중심의 세대에서 자율적이고 동적인 영상 중심의 세대로의 사용자 세대의 변화, 합리적 소비 보다는 감성적 만족을 중요하게 여기는 사용자 가치의 변화, 그래픽 디자인 트랜드의 변화, 서비스 컨텐츠의 변화, 기술의 발전 등 이동통신 단말기를 둘러싼 모든 측면에서 변화가 진행되고 있다. 여기에 이동통신 단말기 제조사, 서비스 업체, 컨텐츠 업체, 칩 제조사 등 이동통신 서비스와 관련된 다양한 사업 주체들의 복잡한 이해관계 속에서의 경쟁 또한 이러한 변화를 부추기는 요인의 하나로 볼 수 있다. 본 연구에서는 이러한 변화요인들을 적절히 수렴하여 제공할 수 있는 보다 효과적인 그래픽 유져 인터페이스 디자인 방법을 모색하고자 하였으며, 보다 효율적이고 적극적인 개선을 위해 현재 이동통신 단말기의 GUI 디자인의 주요 디자인 수단인 Bitmap 또는 Vector 그래픽 대신 보다 다양한 시각적 표현 방법을 내재하고 있는 3D 기반의 Motion 그래픽을 활용한 이동통신 단말기의 GUI 디자인 방법을 제안 하고자 한다. 하지만 아직 여러가지 제약 조건들로 인하여 이동통신 단말기 내에서 3D Motion 그래픽의 적용이 완전히 자유롭지 않은 것이 사실이다. 그러나 기술의 발전 속도로 볼 때 머지 않아 3D Motion GUI 제공을 위한 이동통신 단말기의 기술적 환경은 충분히 발전될 것이며, 이에 따라 본 연구와 같이 3D 그래픽이나 Motion 그래픽을 등을 활용한 이동통신 단말기의 사용자 인터페이스 연구의 선행은 매우 필요하다고 볼 수 있다.

  • PDF

Evaluation Method for Fit of Golf wears based on 3D Motion Analysis - Focus on motion range of upper body - (3차원 동작분석법을 활용한 골프웨어 평가를 위한 기초연구 - 상체 동작범위를 중심으로 -)

  • Chung, Hye-Won;Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.338-350
    • /
    • 2016
  • The purpose of this study is to analyze joint angle for a range of swing motion derived through 3D motion analysis in order to design the ergonomic golf wear, use it for evaluation method of apparel fit to improve exercise functionality and provide the basic materials necessary for designing clothes. In order to do this, the subjects for this study were 3 men of age 20s. The data for a range of motion of golf swing were collected by using equipment for 3D motion analysis and then were used for analysis of joint angles and evaluation method of apparel fit. Range of motion was derived through 3D motion analysis of golf swing motion and joint angles for items of joint motion item and of X, Y, and Z-axis were calculated, respectively. In order to set the evaluation questions for evaluation of apparel fit, to find a range of motion at the maximal value and the minimal value of swing motion. As a result, during the swinging motion, neck extension, right shoulder extension, right/left elbow extension, right/left elbow supination did not appear. Items of joint motion showing the maximum at range of each swing motion were applied into 55 questions and consisted. The results of this study were meaningful as a basic study to apply 3D motion analysis to the fashion industry. It's expected to be used to design functional clothing.

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF