• Title/Summary/Keyword: 3D Morphological Model

Search Result 49, Processing Time 0.022 seconds

Morphological Properties and Target Strength Characteristics for dark banded rockfish (Sebastes inermis) (볼락의 형태학적 특징과 음향반사강도 특성)

  • Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.120-127
    • /
    • 2015
  • Morphological properties of dark banded rockfish (Sebastes inermis) were analysed to investigate its acoustic scattering characteristics. Total of 18 live samples was prepared for X-ray photos and collected morphological coordinates of their body and swim bladder shapes. Kirchhoff-ray mode model was used to calculate acoustic scattering pattern for broad-band frequency range. Inclination of swim bladder ranged from 17 to 30 and the averaged value was about $25.2^{\circ}$ (S.D.(standard deviation)=3.15). There were no any tendency of increase or decrease in volume and area ratio of swim bladder to fish body and ranged from 2.2 % to 4.43 % and 14.85 % to 21.31 %, respectively. The averaged value of volume and area ratio was 3.13 % (S.D.=0.52) and 17.6 % (S.D.=1.5). $b_{20}$ values were -69.01 for 38 kHz, -69.83 for 70 kHz, -70.17 for 120 kHz and -70.93 for 200 kHz, recpectively. Broadband acoustic patterns of dark banded rockfish for 20 ~ 200 kHz were similar among samples and they reflected size and morphological properties of fish species.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Physical Habitat Simulation Considering Stream Morphology Change due to Flood (홍수에 의한 하도변형을 고려한 물리서식처 모의)

  • Lee, Sungjin;Kim, Seung Ki;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.805-812
    • /
    • 2014
  • This study investigates the impact of morphological change on the physical habitat simulation. For this, CCHE2D model is used for the hydraulic analysis including the morphological change, and the physical habitat suitability is assessed with habitat suitability curves. The model is applied to a 2.5km long reach downstream of the Goesan Dam, from Sujeon Bridge to Daesu Weir. Flow data of discharge and stage in July, 2006 are used in the computation. The numerical model is verified by means of comparison with the measured water surface elevation data, and the variation of the river bed is not verified in this study. Adult Zacco platypus is chosen for the dominant species. Physical habitat simulations result in composite habitat suitability and weighted usable area for drought, low, normal, and averaged-wet flows. The simulation results indicate that the composite suitability index increased at reaches right downstream of the Sujeon Bridge and around the bend. This also increased weighted usable area by 5.4-11.3%.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.

Field Observation and Quasi-3D Numerical Modeling of Coastal Hydrodynamic Response to Submerged Structures

  • Yejin Hwang;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.68-79
    • /
    • 2023
  • Even though submerged breakwater reduces incident wave energy, it redistributes the coastal area's wave-induced current, sediment transport, and morphological change. This study examines the coastal hydrodynamics and the morphological response of a wave-dominated beach with submerged breakwaters installed through field observation and quasi-3D numerical modeling. The pre-and post-storm bathymetry, water level, and offshore wave under storm forcing were collected in Bongpo Beach on the East coast of Korea and used to analyze the coastal hydrodynamic response. Four vertically equidistant layers were used in the numerical simulation, and the wave-induced current was examined using quasi-3D numerical modeling. The shore normal incident wave (east-northeast) generated strong cross-shore and longshore currents toward the hinterland of the submerged breakwater. However, the oblique incident wave (east-southeast) induced the southeastward longshore current and the sedimentation in the northeast area of the beach. The results suggested that the incident wave direction is a significant factor in determining the current and sediment transport patterns in the presence of the submerged breakwaters. Moreover, the quasi-3D numerical modeling is more appropriate for estimating the wave transformation, current, and sediment transport pattern in the coastal area with the submerged breakwater.

Exploration of Isovist Fields to Model 3D Visibility With Building Facade

  • Chang, Dong-Kuk;Park, Joo-Hee
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Visibility of a space have been defined in several different ways: such as the axial line covering a convex space, a convex space defining the fattest shape in a space and an Isovist field formed by a field of vision at a given vantage point. Isovist fields are referred to as a descriptive medium to describe a movement by reviewing and analyzing geometric properties in them. Many descriptive methods for analysis of three-dimensional isovist are applied to analyzing the morphological properties in a 3D space more realistically. Although these models are regarded as a more advanced method for describing spatial properties, they have pros and cons such as complex mathematical calculations and somewhat arbitrary calibration in addition to huge consumption of memory space. These difficulties lead to the development of a three-dimensional visual accessibility model that explores the implication of building shape on the calculation of isovist fields drawn on a 2D plane. We propose a conceptual framework of how to measure the isovist field not as a 3D volume but as a combination of 2D plane on the ground with the 3D building shape of it's facade.

Geometry Reconstruction Using Dictionary Learning of 3D Shape Features (3차원 형태 특징의 사전 학습을 이용한 기하 복원)

  • Hwang, Jung-Min;Yoon, Yeo-Jin;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • In this paper, we present a dictionary learning method for reducing errors in point cloud models and reconstructing their geometry. For this, 3D feature information is extracted from the models which have a similar shape characteristic as the target model. Then a dictionary is constructed and the geometry is reconstructed using the dictionary. The presented method in this paper consists of the following three steps. First, a geometric patch is constructed from a similar model. Second, a morphological 3D feature of the acquired patch is learned. Third, a geometry reconstruction is performed using the learned dictionary. Finally, the error between the original model and the reconstruction result is calculated, and the accuracy of the reconstruction result is checked.

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.