• Title/Summary/Keyword: 3D Models

Search Result 3,262, Processing Time 0.03 seconds

Development of Valuation Framework for Estimating the Market Value of Media Contents (미디어 콘텐츠의 시장가치 산정을 위한 가치평가 프레임워크 개발)

  • Sung, Tae-Eung;Park, Hyun-Woo
    • Journal of Service Research and Studies
    • /
    • v.6 no.3
    • /
    • pp.29-40
    • /
    • 2016
  • Since the late 20th century, there has been much effort to improve the market value of media contents which are commercialized in a digital format, by fusing digital data of video, audio, numerals, characters with IT technology together. Then by what criteria and methodologies could the market value for the drama "Sons of the Sun" or the animated film 'Frozen', often referred to in the meida, be estimated? In the circumstances there has been little or no research on the valuation framework of media contents and the status of their valuation system development to date, we propose a practical valuation models for various purposes such as contents trading, review of investment adequacy, etc., by formalizing and presenting a contents valuation framework for the four types of media of movies, online games, and broadcasting commercials, and animations. Therefore, we develope computational methods of cash flows which includes production cost by media content types, provide reference databases associated with key variables of valuation (economic life cycle, discount rates, contents contribution and royalty rates), and finally propose the valuation framework of media contents based on both income approach and relief-from-royalty method which has been applied to valuation of intangible assets so far.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model

  • Mohammad Amjad Hossain;Soyeon Lim;Kiran D. Bhilare;Md Jahangir Alam;Baicheng Chen;Ajay Vijayakumar;Hakyoung Yoon;Chang Won Kang;Jong-Hoon Kim
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.83.1-83.12
    • /
    • 2023
  • Background: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. Objectives: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. Methods: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. Results: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. Conclusions: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.

Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning (머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발)

  • Chanho Kim;Minshick Choi;Chonghyo Joo;A-Reum Lee;Yun Gun;Sungho Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.214-224
    • /
    • 2024
  • Valves play an essential role in a chemical plant such as regulating fluid flow and pressure. Therefore, optimal selection of the valve size and type is essential task. Valve size and type have been selected based on theoretical formulas about calculating valve sizing coefficient (Cv). However, this approach has limitations such as requiring expert knowledge and consuming substantial time and costs. Herein, this study developed a model for predicting valve sizes and types using machine learning. We developed models using four algorithms: ANN, Random Forest, XGBoost, and Catboost and model performances were evaluated using NRMSE & R2 score for size prediction and F1 score for type prediction. Additionally, a case study was conducted to explore the impact of phases on valve selection, using four datasets: total fluids, liquids, gases, and steam. As a result of the study, for valve size prediction, total fluid, liquid, and gas dataset demonstrated the best performance with Catboost (Based on R2, total: 0.99216, liquid: 0.98602, gas: 0.99300. Based on NRMSE, total: 0.04072, liquid: 0.04886, gas: 0.03619) and steam dataset showed the best performance with RandomForest (R2: 0.99028, NRMSE: 0.03493). For valve type prediction, Catboost outperformed all datasets with the highest F1 scores (total: 0.95766, liquids: 0.96264, gases: 0.95770, steam: 1.0000). In Engineering Procurement Construction industry, the proposed fluid-specific machine learning-based model is expected to guide the selection of suitable valves based on given process conditions and facilitate faster decision-making.

Comparison of Crown Shape and Amount of Tooth Reduction for Primary Anterior Prefabricated Crowns (유전치 기성 크라운의 형태 및 치질 삭제량 비교)

  • Kim, Soyoung;Lim, Youjin;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.64-75
    • /
    • 2019
  • The purpose of this study was to obtain instructions for size selection of prefabricated crown and tooth reduction by 3-dimensional analysis of the size and shape of the maxillary primary central and lateral incisors and prefabricated crowns (celluloid strip, resin veneered stainless steel, and zirconia crowns). The maxillary primary central and lateral incisors of 300 Korean children was scanned with three types of prefabricated crown to create standard three-dimensional tooth models and prefabricated crowns. The shapes of the prefabricated crowns and natural teeth were compared according to four parameters (mesio-distal width, height, labio-palatal width, and labial surface curvature coefficient) and calculated the amount of tooth reduction required for each prefabricated crown. The size 2 resin veneered stainless steel crown, size 1 zirconia crown, and size 2 celluloid strip crown were most similar in shape to the primary central incisor. The size 3 rein veneered stainless steel crown, size 2 zirconia crown, and size 3 celluloid strip crown were most similar to the primary lateral incisor. The amount of tooth reduction was similar in both maxillary primary central and lateral incisors. The incisal reduction was greatest for the zirconia crown. At the proximal surface, the zirconia and celluloid strip crowns required a similar amount of tooth reduction, but more than the resin veneered stainless steel crown. The labial surface reduction was greatest for the zirconia crown. The degree of lingual surface reduction was not significant among the three prefabricated crowns. Among the assessment parameters, mesio-distal crown width was the most important for choosing a prefabricated crown closest to the actual size of the natural crown.

Three-dimensional finite element analysis for the effect of retentive groove design on joint strength of casting connection (유지구 설계가 주조연결강도에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Kim, Jung-Woo;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Statement of problem: A casting connection technique is widely used for repair, correction and addition to base metal framework. However, a casting connection technique may increase the risk of failure in clinical situations when high stresses exist. Purpose: The purpose of this study was to investigate the mechanical retentive groove design comparatively to increase the joint strength by using the three-dimensional finite element analysis model of a 3-unit fixed partial denture. Material and methods: Ten finite element models were constructed. (Model A: One retentive groove, Model B: Two retentive grooves, Model C: Three retentive grooves, Model D: Four retentive grooves, Model E: One horizontal groove and two vertical grooves, Model F: Two horizontal grooves and one vertical groove, Model G: One groove with the enlarged dimension, Model H: Two grooves with the enlarged dimension, Model I: One groove with the increased height, Model J: One groove with the increased width of base). The vertical force was applied to the mesial and the distal fossa to the casting connection of mandibular first molar. Results: The main factors, affecting joint strength of casting connection were both the retention between the primary cast and the secondary cast and the thickness of the primary cast remaining after preparing retentive groove. The increase of retentive force, according to the numbers and the dimension of retentive groove had an effect on distributing stress. However, in some cases, the increase of retentive force resulted in the increase of stress by reducing thickness of the primary cast in the connection area. Conclusion: The design of retentive groove that limits number of retentive groove for metal thickness and increases the depth of retentive groove for retention is highly recommended.

A study on the Wonju Medical Equipment Industry Cluster (원주의료기기산업 클러스터의 형성과정에 관한 연구)

  • Lee, Woo-Chun;Yoon, Hyung-Ro
    • Journal of the Korean Academic Society of Industrial Cluster
    • /
    • v.1 no.1
    • /
    • pp.67-86
    • /
    • 2007
  • Wonju Medical Equipment Industry, despite of its short history, poor sales and weak manpower and so on, have shown remarkable outcomes in a relatively short period. At the end of 2007, totally 79 enterprises (only 4.6% of whole enterprises in Korea) made 10% of the nationwide production and 15% of the nationwide exports with an annual average growth rate of 66.7%, contributing domestic medical equipment industry tremendously. In addition, many leading medical equipment enterprises in various fields already moved or plan to move to Wonju, accelerating Wonju Medical Equipment Cluster. Wonju Medical Equipment Industry Cluster now enters into the growth stage, getting out of the initial business setup stage. Especially, the nomination of Wonju cluster project from the government accelerates networking (e.g. the development of the universal parts, the establishment of the mutual collaboration model among enterprises, and the mutual marketing), making a rapid growth in Wonju Medical Equipment Industry. Wonju Medical Equipment Industry Cluster revealed positive outcomes despite of the weakness in investment size and infra-structure comparing with the other medical industry cluster in the advanced country, while many domestic enterprises pursued their own growth models and thus failed to promote the international competitive power. Wonju Medical Equipment Industry has been developed rapidly. However, there are many challenging problems to support enterprises: small R&D investment and thus weak technology power, difficulties in recruiting R&D engineers, and poor marketing capabilities, financial infrastructure & policies, and network architecture. In order to develop a world-competitive medical equipment industry cluster at Wonju, the complement of infrastructures, the technology innovation, the mutual marketing, and the network expansion to support enterprises are further required. Wonju' s experiences in developing medical equipment industry so far suggest that our own flexible cluster model considering the industry structure and maturity for different regions should be developed, and specific action plans from the local and central governments based on their systematic strategies for industry development should be implemented in order to build world-competitive industry clusters in Korea.

  • PDF

Articulated Human Body Tracking Using Belief Propagation with Disparity Map (신뢰 전파와 디스패리티 맵을 사용한 다관절체 사람 추적)

  • Yoon, Kwang-Jin;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • This paper suggests an efficient method which tracks articulated human body modeled with markov network using disparity map derived from stereo images. The conventional methods which only use color information to calculate likelihood for energy function tend to fail when background has same colors with objects or appearances of object are changed during the movement. In this paper, we present a method evaluating likelihood with both disparity information and color information to find human body parts. Since the human body part are cylinder projected to rectangles in 2D image plane, we use the properties of distribution of disparity of those rectangles that do not have discontinuous distribution. In addition to that we suggest a conditional-messages-update that is able to reduce unnecessary message update of belief propagation. Since the message update has comprised over 80% of the whole computation in belief propagation, the conditional-message-update yields 9~45% of improvements of computational time. Furthermore, we also propose an another speed up method called three dimensional dynamic models assumed the body motion is continuous. The experiment results show that the proposed method reduces the computational time as well as it increases tracking accuracy.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.