• Title/Summary/Keyword: 3D Modeling system

Search Result 1,191, Processing Time 0.029 seconds

A Study on the 3-D Geometric Modeler for Safety Assessment of Damaged Ships (손상선박의 안전성평가를 위한 3차원 형상 모델러에 관한 연구)

  • 이동곤;이순섭;박범진
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.30-36
    • /
    • 2003
  • To improve survivability of damaged ship, assessment of stability and structural safety, and behavior analysis in wave is required. Prediction of sinking time, damage stability and structural strength considering progressive flooding and dynamic force in wave is very important. To do it, a geometric model which can be express damaged ship is prepared. This paper described the geometric modeler for survivability assessment of damaged ship. The modeler is developed based on 3-D geometric modeling kernel, ACIS. The hull form and compartment definition is available fundamentally. And requirement for modeler contains data generation and interface for hydrostatic calculation, behavior analysis, and longitudinal strength analysis and so on. To easy access modeling system by conventional user such as crew, user interface is developing.

Development of a 3D Off-Line Graphic Simulator for Industrial Robot (산업용 로봇의 3차원 오프라인 그래픽 시뮬레이터 개발)

  • 장영희;한성현;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • In this paper, we developed a Windows 98 version Off-Line Programming System which can simulate a Robot model in 3D Graphics space. 4 axes SCARA Robot (especially FARA SM5) was adopted as an objective model. Forward kinemat-ics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 98s GUI environment was also studied. The developing is Microsoft Visual C++. Graphic libraries, OpernGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

(A) study on location correction method of indoor/outdoor 3D model through data integration of BIM and GIS (BIM과 GIS 데이터 융합을 통한 실내외 3차원 모델 위치보정 방안 연구)

  • Kim, Ji-Eun;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.56-62
    • /
    • 2017
  • As the need for 3D spatial information increases, many local governments and related industries are establishing map-based 3D spatial information services and offering them to users. In these services, positional accuracy is one of the most important factors determining their applicability to specific tasks. This study studied the location correction method between indoor and outdoor 3D spatial information through the construction of modeling data on a BIM/GIS platform. First, we selected the sites and processed the BIM/GIS data construction with 3 steps. When connecting the BIM model including indoor spatial data and 3D texturing model based on ortho images, mismatches occurred, so we proposed a location correction method. Using the conversion algorithm, the relative coordinate-based BIM data were converted to the absolute positions and then relocated by means of the texturing data on the BIM/GIS platform.

A Study on the Selection and Applicability Analysis of 3D Terrain Modeling Sensor for Intelligent Excavation Robot (지능형 굴삭 로봇의 개발을 위한 로컬영역 3차원 모델링 센서 선정 및 현장 적용성 분석에 관한 연구)

  • Yoo, Hyun-Seok;Kwon, Soon-Wook;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2551-2562
    • /
    • 2013
  • Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.

Introducing and Surveying 4D Models in AEC Industry (4D 공정관리시스템의 개발현황 조사연구)

  • Kang Leen-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.137-142
    • /
    • 2001
  • The traditional schedule management system provides project manager with analysis reports, such as progress control, earned value management and resource management, including schedule chart. However, the reports and functions in the traditional system are still limited in 2D concept. Recently, the scheduling method is using 4D concept that time of construction schedule is linked to space of drawings. This study presents the limitation of those systems and an improved method for developing 4D system through the comparative analysis of representative 4D systems that are developed up to date.

  • PDF

Traveler Guidance System based on 3D Street Modeling

  • Kim, Seung-Jun;Eom, Seong-Eun;Byun, Sung-Cheal;Yang, See-Moon;Ahn, Byung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1187-1190
    • /
    • 2004
  • This paper presents a traveler guidance system that offers 3D street information such as road types, signal light systems, street trees, buildings, etc. We consider 5x4 road system of Gangnam(in Seoul, Korea) as a test area and reflect the traveler's car-driving situation. A web server is constructed to serve traveler's driving path by switching 3D animation scenes automatically. To do batch processing of geometric data for the 3D graphical streets construction, we have extracted major street information from present GIS database and created new GIS file formats (SMF files), which contain data sessions for links, nodes, and facilities. With these files, we can render 3D navigation scenes. A number of vector calculations were performed for the geometrical consistence and texture-mapping method was used for the realistic scene generation. Finally, we have verified the effectiveness of the service by operating a test scenario. We have checked whether traveler's 2D path and 3D navigation are exactly reported after setting specific departure and destination. This system offers us well awareness of streets and takes useful role of traveler guidance.

  • PDF

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • Journal of KIBIM
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

A Study of Efficient Method of 3D JIG Kinematic Modeling for Automobile Process Simulation (자동차 공정 시뮬레이션의 3D 지그 키네마틱 정보 모델링을 위한 효율적 방법 연구)

  • Ko, Min-Suk;Kwak, Jong-Geun;Jo, Hee-Won;Park, Chang-Mok;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.415-423
    • /
    • 2009
  • Because of the fast changing car design and increasing facilities, manufacturing process of cars is getting more complex now a days. Particularly, car manufacturing system that consist of automated devices, applies various simulation techniques to validate device motion and detect collision. To cope with this problem, traditional manufacturing system deployed test-run with the real devices. However, increased computing power in a contemporary manufacturing system changes it into realistic 3D simulation environment. Similarly, managed device data that was generated using 2D traditionally, can be converted to 3D realistic simulation. The existing problem with 3D simulation is disjoint data interaction between different work stations. Consequently, JIGs, fixing the car part accurately, are changed according to fixing position on the part or a part shape properties. In practice, the 3D JIG data has to be managed according to kinematic information, but not of its features. However, generating kinematic information to the 3D model repeatedly according to frequent change in part is not explained in current literatures. To fill this knowledge gap, this paper suggests an improving method of rendering 3D JIG kinematics information to simulation model. Thereafter, it shows the result of implementation.

Three-dimensional Electromagnetic Modeling in Frequency Domain (주파수영역 전자법의 3차원 모델링)

  • Jang, Hannuree;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2014
  • Development of a modeling technique for accurately interpreting electromagnetic (EM) data is increasingly required. We introduce finite difference (FD) and finite-element (FE) methods for three-dimensional (3D) frequency-domain EM modeling. In the controlled-source EM methods, formulating the governing equations into a secondary electric field enables us to avoid a singularity problem at the source point. The secondary electric field is discretized using the FD or FE methods for the model region. We represent iterative and direct methods to solve the system of equations resulting from the FD or FE schemes. By applying the static divergence correction in the iterative method, the rate of convergence is dramatically improved, and it is particularly useful to compute a model including surface topography in the FD method. Finally, as an example of an airborne EM survey, we present 3D modeling using the FD method.

Design of Interface between 3D Object Model and Structure Analysis Program (3D 객체 모델과 구조해석 프로그램의 인터페이스 설계)

  • Park, Jae-Geun;Kim, Min-Hee;Lee, Kwang-Myong;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Recently, the virtual construction system in which project participants efficiently share and control the information throughout the life-cycle of construction project using 3D object models is being developed all over the world. In this paper, a design of interface between 3D object model of structures and structural analysis system that is essential for the analysis and design of civil structures in the virtual space is treated. The relation parametric modeling technique that is needed to make the 3D object models and the construction method of product breakdown structure(PBS) that considers the several parameters for the structural analysis are presented. PBS is built so that it is possible to extract needed attribute information from 3D object model and to apply it to the structural analysis. Design methodology for interface program is proposed that several numerical values determined by the cooperative work same as structural analysis are delivered to 3D object models without additional work. An interface program between 3D object models and structural analysis system developed based on the proposed method would be effectively used to develop virtual construction system.