• 제목/요약/키워드: 3D Modeling Program

검색결과 339건 처리시간 0.032초

동익 회전속도 변화에 따른 1단 축류 압축기 선회실속의 특성변화 연구 (The property change of rotating stall in one-stage axial compressor according to rotor's rotating speed variation)

  • 최민석;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.258-263
    • /
    • 2002
  • A numerical analysis using 2-D unsteady compressible program is conducted to explain characteristics of rotating stall such as rotating speed and number of stall cells in an one-stage axial compressor. Unlike an axial compressor which has only a rotor, in one-stage axial compressor a rotating stall is generated by rotor/stator interaction and tack pressure rising without any artificial disturbance and modeling. As a back pressure is raised, the separation of suction side at blades is increased uniformly, but because of the discrepancy of blockage effect by stator, the disturbances are generated to form a stall cell. Once the stall cell is formed, regularly the stall cell are rotating through rotor blades. When the speed of rotor is design speed the rotating speed of stall cell is $83.3\%$ of rotor rotating speed. When the speed of rotor is $80\%$ of design speed, the speed of rotating stall is $88.2\%$ of rotor speed. The number of generated stall cell are also varied for rotor speed and back pressure.

  • PDF

인터넷 웹기반 RADIANCE 가시화 시스템의 개발 : I. 조명기구의 데이터베이스 구축 (Development of Internet Web - based RADIANCE Rendering System : I. Establishment of the Luminaire Database)

  • 최안섭;이정은;오은숙;송규동
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.1-8
    • /
    • 2004
  • 현재 빛환경의 평가도구로서 사용하고 있는 여러 조명 시뮬레이션 프로그램들은 대부분 국외에서 생산되고 있는 조명기구의 데이터를 바탕으로 하고 있다. 그렇게 때문에 국내 환경에 맞는 빛환경의 정확한 평가에는 한계를 가지고 있다. 본 연구의 진행은 사용자들의 편의성을 도모하기 위하여 실무에서 많이 활용되고 있는 조명기구를 선별하여 종류별로 분류하였다. 그리고 국내에서 생산되고 있는 조명기구의 데이터 수집을 바탕으로 RADIANCE 엔진을 이용하여 인터넷 웹기반 가시화 시스템 개발을 위한 조명기구의 데이터베이스를 구축하였다.

원추형 코일스프링의 강성해석 (Analysis of Stiffness for Frustum-shaped Coil Spring)

  • 김진훈;이수종;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

BlM 도구의 사용자 인터페이스 개선사항에 관한 연구 - 건축기획과 계획 설계 과정을 중심으로 - (A Study on Improving Usability focused User Interface in the BIM tool sets - Focused on Preliminary-Design and Schematic-Design in Architecture -)

  • 정혁진
    • 한국디지털건축인테리어학회논문집
    • /
    • 제9권1호
    • /
    • pp.31-40
    • /
    • 2009
  • This study is intended to suggest methodologies in theory that is dedicated to improve existing features in BlM tool sets and introduce a new horizon for developing new features in the future so that more functionality can be provided to the work process of architect. To be more utilized of BlM tool sets in a useful way, it is important to make sure to program a calculation method used in the design process which is based on the information provided by architect, such as design item with detailed process and transformed parametric information on warranty data. Finding pros and cons in the usability from the well-known 3D modeling applications and taking highly usable UI features from the existing applications, and using a common wording were carried out. Design architect identifies reusable parametric information and then finds an algorithm between each items so that BlM tool sets can contribute to design field in the future. Therefore, the formula has been developed for the items considering business aspects and architecturing size in the preliminary-design, and design aspects in the schematic design with idendifying inputs and outputs that is necessary to become fixed factors.

  • PDF

고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성 (The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed)

  • 구민수;김정석;강익수;박진효;이종환;김기태
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Kranz, Burkhard;Benjeddou, Ayech;Drossel, Welf-Guntram
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.579-594
    • /
    • 2013
  • A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • 제1권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

네오디뮴 영구자석을 이용한 컨베이어벨트 구동형 미세칩 포집장치의 성능 평가 (Performance Evaluation of Microchip Removal Device Rotating by Conveyor Belt with Neodymium Permanent Magnet)

  • 최성윤;왕준형;왕덕현
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.103-109
    • /
    • 2021
  • Fine chips generated by machining have an impact on machine failure and quality of machined products, it is necessary to remove the chips, so the microchip collection and removal device by rotating conveyor belt with neodymium permanent magnets was developed. In this research, to solve the problem for reducing the existing microchips in the tank, a micro-chip removal device by rotating conveyor belt with neodymium permanent magnets developed. In the development of micro-chip removal device, 3D CATIA modeling was used, and the flow analysis and the electromagnetic force analysis were performed with COMSOL Multiphysics program. To evaluate the performance of the prototypes produced, design of experiments (DOE) is used to obtain the effect of neodymium conveyor movement speed on chip removal for the ANOVA analysis of recovered powders. An experiment was conducted to investigate the effect of the conveyor feed rate on the chip removal performance in detail. As a result of the experiment, it was confirmed that the slower the feeding speed of the fine chip removing device, the more efficient the chip removal.

Experimental and numerical analyses of RC beams strengthened in compression with UHPFRC

  • Thomaz E.T. Buttignol;Eduardo C. Granato;Tulio N. Bittencourt;Luis A.G. Bitencourt Jr.
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.511-529
    • /
    • 2023
  • This paper aims to better understand the bonding behavior in Reinforced Concrete beams strengthened with an Ultra-High Performance Fiber Reinforced Concrete (RCUHPFRC) layer on the compression side using experimental tests and numerical analyses. The UHPFRC mix design was obtained through an optimization procedure, and the characterization of the materials included compression and slant shear tests. Flexural tests were carried out in RC beams and RC-UHPFRC beams. The tests demonstrated a debonding of the UHPFRC layer. In addition, 3D finite element analyses were carried out in the Abaqus CAE program, in which the interface is modeled considering a zero-thickness cohesive-contact approach. The cohesive parameters are investigated, aiming to calibrate the numerical models, and a sensitivity analysis is performed to check the reliability of the assumed cohesive parameters and the mesh size. Finally, the experimental and numerical values are compared, showing a good approximation for both the RC beams and the RC strengthened beams.

누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로- (Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area-)

  • 이은지;한만형;천영우;이익모;황용우
    • 한국안전학회지
    • /
    • 제35권6호
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.